文章的主要内容是介绍了一种硬件高效的变分量子本征求解器(VQE),用于解决小分子和量子磁体的问题。以下是文章的创新点、原理和方法的总结:
创新点:
-
硬件高效的VQE:文章提出了一种新的VQE方法,该方法特别针对量子处理器上可用的相互作用进行了优化。这种方法通过使用特定的量子处理器上的相互作用来构建试验态,而不是依赖于理论上的酉算子。
-
多量子比特问题优化:文章展示了如何使用六量子比特Hamiltonian问题来确定分子的基态能量,这是迄今为止在量子计算机上实现的最大规模的量子化学模拟之一。
-
费米子到量子比特的映射:文章提出了一种紧凑的编码方法,将费米子Hamiltonian映射到量子比特上,这对于在量子计算机上模拟分子结构问题至关重要。
-
鲁棒的随机优化算法:文章结合了一种鲁棒的随机优化算法,即使在存在噪声的情况下也能有效地优化设备的性能。
原理:
文章基于量子计算机可以解决传统高性能计算资源难以处理的分子结构、材料科学和凝聚态物理问题的原理。这些经典计算方法要么成本指数级增长,要么受到费米子符号问题的困扰。文章利用量子相位估计算法(PEA)和变分量子本征求解器(VQE)来寻找分子的基态能量。
方法:
-
费米子到量子比特的映射:文章使用了一种映射方法,将费米子算符映射到量子比特算符上,将问题重新表述为一组量子比特上的局部哈密顿量问题。
-
硬件高效的试验态:文章提出了一种针对特定量子处理器的试验态参数化方法,这些试验态通过量子门构建,并且与量子处理器上的物理相互作用相匹配。
-
随机优化算法:文章采用了一种随机优化算法,该算法通过估计能量的梯度来更新参数,即使在参数空间维度很高时也能保持较高的精度。
-
实验验证:文章通过实验验证了所提出方法的有效性,展示了对H2、LiH和BeH2分子的基态能量的优化,并将其应用于量子磁体问题。