量子计算技术VQE: Introducing VQE — Variational Quantum Eigensolver Algorithm

本文介绍了量子计算中的VQE(Variational Quantum Eigensolver)算法,包括基本概念、算法流程和量子电路模板设计。VQE通过迭代优化量子态找到近似最优解,适用于解决复杂问题。文章详细阐述了VQE的准备、搜索、训练和返回结果的步骤,并探讨了不同类型的量子电路模板及其影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

近年来,量子计算技术已经在物理、化学、材料科学等多个领域引起了极大的关注。其中,Variational Quantum Eigensolver (VQE) 的研究就是一个颠覆性的革命性变革,它将量子计算机从解决海量求解问题的神经网络中解放出来,使其真正成为一种通用计算平台。在实现 VQE 的过程中,面临着许多艰难的困境。比如如何通过优化一个计算目标函数找到最优的量子态?如何提升量子计算机的处理能力?本文将简要介绍 variational quantum eigensolver(VQE)的一些基本概念、算法流程、数学基础和代码实例,并试图给读者提供一些借鉴和思考的参考。

2. 基本概念及术语说明

2.1 什么是 VQE?

量子态(quantum state)是指量子信息处理的基本对象之一,其物理形式由多个比特的排列组合而成。每个比特可能处于两种状态:0 或 1。而量子态的态矢(state vector)则是这些比特的取值向量,也就是说,它表示了该量子态在多项式时间内的分布。

然而,对于某些复杂的问题来说,我们并不能精确地测量出某个量子态的信息。因此,量子算法的关键在于如何找到一种有效的方式去找到或生成这种未知的量子态。这就是 variational qua

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值