python实现时间序列数据的填补

对于一个二维的Datafram序列部分如图,实现对其中间空缺值的填补。

 这里用到了pandas库中的重采样

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
#导入库
df = pd.read_csv(path)
df = df.drop_duplicates(['time'])#为防止有重复索引序列,将其删除
df = pd.DataFrame(df).set_index('time')#将时间列变为索引

df.index = pd.to_datetime(df.index, format='%Y-%m-%d %H:%M:%S')
df1 = df.resample('1S').ffill()#这里用重采样,变为每秒采样,并向前一直填充上一个值


df1.to_csv("")

 其中resample,还可以应平均值插值,用后向值插值等进行填充,最后处理完效果如下:

实现了对缺失时间序列的填充。 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值