目录
1. ResearchGate-Ellen Hamaker-How to run a multiple indicator RI-CLPM in Mplus
2. ResearchGate-Ellen Hamaker-Mplus files for the MI RI-CLPM
1. 形态等值(Configural Invariance)
2. 单位等值(Metric Invariance)或弱等值(Weak Invariance)
3. 尺度等值(Scalar Invariance)或强等值(Strong Invariance)
简介
关于多指标随机截距交叉滞后模型(Multiple Indicator Random Intercept Cross-Lagged Panel Model, MI RI-CLPM),在下面这篇文章的“Extension 3: The multiple indicator RI-CLPM”部分有相应介绍,感兴趣的可以仔细阅读一下。
Mulder, J. D., & Hamaker, E. L. (2021). Three Extensions of the Random Intercept Cross-Lagged Panel Model. Structural Equation Modeling: A Multidisciplinary Journal, 28(4), 638–648. https://doi.org/10.1080/10705511.2020.1784738
1. MI RI-CLPM有两种形式,如下图所示。第二个模型是第一个模型的特殊情况。目前有关RI-CLPM的文献采用的多数为第二个模型。


2. 在建立模型之前,首先要进行纵向不变性检验。至少要满足单位等值(Metric Invariance)或弱等值(Weak Invariance)。纵向不变性检验可参见文章:
To allow for a meaningful comparison of factors over time, the factor loadings should be time-invariant, such that there is (at least) weak factorial invariance over time (Meredith, 1993; Millsap, 2011).
如上图所示,所谓MI RI-CLPM,就是将每个潜变量分为个体间水平(Between-person level)和个体内水平(Within-person level)。
Mplus语法参考
1. ResearchGate-Ellen Hamaker-How to run a multiple indicator RI-CLPM in Mplus
网址:https://www.researchgate.net/publication/328095575_How_to_run_a_multiple_indicator_RI-CLPM_in_Mplus
2. ResearchGate-Ellen Hamaker-Mplus files for the MI RI-CLPM
网址:https://www.researchgate.net/publication/328095732_Mplus_files_for_the_MI_RI-CLPM
3. Ext. 3: multiple indicator
网址:https://jeroendmulder.github.io/RI-CLPM/mplus.html#Ext_3:_multiple_indicator
Mplus语法
1. 形态等值(Configural Invariance)
TITLE: Multiple indicator RI-CLPM 4 waves with 3 indicators for each variable at each wave (24 observed variables) Fitting a model without constraints;
DATA: FILE = MIRICLPM.dat; ! 数据来源
VARIABLE: NAMES ARE x11 x12 x13 x21 x22 x23
x31 x32 x33 x41 x42 x43
y11 y12 y13 y21 y22 y23
y31 y32 y33 y41 y42 y43; ! 变量名称
MODEL:
! Factor models for x at 4 waves 创建潜变量
FX1 BY x11-x13;
FX2 BY x21-x23;
FX3 BY x31-x33;
FX4 BY x41-x43;
! Factor models for y at 4 waves 创建潜变量
FY1 BY y11-y13;
FY2 BY y21-y23;
FY3 BY y31-y33;
FY4 BY y41-y43;
OUTPUT: TECH1;
2. 单位等值(Metric Invariance)或弱等值(Weak Invariance)
TITLE: Multiple indicator RI-CLPM 4 waves with 3 indicators for each variable at each wave (24 observed variables) Fitting a model with constraints on the factor loadings over time (weak factorial invariance);
DATA: FILE = MIRICLPM.dat;
VARIABLE: NAMES ARE x11 x12 x13 x21 x22 x23
x31 x32 x33 x41 x42 x43
y11 y12 y13 y21 y22 y23
y31 y32 y33 y41 y42 y43;
MODEL:
! Factor models for x at 4 waves 加设因子负荷等值,通过相同的数字设定负荷等值
FX1 BY x11-x13 (L1-L3);
FX2 BY x21-x23 (L1-L3);
FX3 BY x31-x33 (L1-L3);
FX4 BY x41-x43 (L1-L3);
FY1 BY y11-y13 (L4-L6);
FY2 BY y21-y23 (L4-L6);
FY3 BY y31-y33 (L4-L6);
FY4 BY y41-y43 (L4-L6);
OUTPUT: TECH1;
3. 尺度等值(Scalar Invariance)或强等值(Strong Invariance)
TITLE: Multiple indicator RI-CLPM 4 waves with 3 indicators for each variable at each wave (24 observed variables) Fitting a model with constraints on the factor loadings and intercepts over time, while freeing latent means from 2=t onward (strong factorial invariance);
DATA: FILE = MIRICLPM.dat;
VARIABLE: NAMES ARE x11 x12 x13 x21 x22 x23
x31 x32 x33 x41 x42 x43
y11 y12 y13 y21 y22 y23
y31 y32 y33 y41 y42 y43;
MODEL:
! Factor models for x at 4 waves ! constrained factor loadings over time 加设因子负荷等值
FX1 BY x11-x13 (L1-L3);
FX2 BY x21-x23 (L1-L3);
FX3 BY x31-x33 (L1-L3);
FX4 BY x41-x43 (L1-L3);
FY1 BY y11-y13 (L4-L6);
FY2 BY y21-y23 (L4-L6);
FY3 BY y31-y33 (L4-L6);
FY4 BY y41-y43 (L4-L6);
! Constrained intercepts over time 加设截距等值
[x11 x12 x13] (i1-i3);
[x21 x22 x23] (i1-i3);
[x31 x32 x33] (i1-i3);
[x41 x42 x43] (i1-i3);
[y11 y12 y13] (i4-i6);
[y21 y22 y23] (i4-i6);
[y31 y32 y33] (i4-i6);
[y41 y42 y43] (i4-i6);
[FX2* FX3* FX4*];
[FY2* FY3* FY4*];
OUTPUT: TECH1;
4. MI RI-CLPM
TITLE: Multiple indicator RI-CLPM 4 waves with 3 indicators for each variable at each wave (24 observed variables) Fitting a model with constraints to ensure strong factorial invariance, with the RI-CLPM at the latent level;
DATA: FILE = MIRICLPM.dat;
VARIABLE: NAMES ARE x11 x12 x13 x21 x22 x23
x31 x32 x33 x41 x42 x43
y11 y12 y13 y21 y22 y23
y31 y32 y33 y41 y42 y43;
MODEL:
! Factor models for x at 4 waves 创建潜变量
! constrained factor loadings over time 加设因子负荷等值
FX1 BY x11-x13 (L1-L3);
FX2 BY x21-x23 (L1-L3);
FX3 BY x31-x33 (L1-L3);
FX4 BY x41-x43 (L1-L3);
FY1 BY y11-y13 (L4-L6);
FY2 BY y21-y23 (L4-L6);
FY3 BY y31-y33 (L4-L6);
FY4 BY y41-y43 (L4-L6);
! Constrained intercepts over time 加设截距等值
[x11 x12 x13] (i1-i3);
[x21 x22 x23] (i1-i3);
[x31 x32 x33] (i1-i3);
[x41 x42 x43] (i1-i3);
[y11 y12 y13] (i4-i6);
[y21 y22 y23] (i4-i6);
[y31 y32 y33] (i4-i6);
[y41 y42 y43] (i4-i6);
[FX2* FX3* FX4*];
[FY2* FY3* FY4*];
! Create between factors (random intercepts) 创建个体间变量/随机截距
RIX BY FX1@1 FX2@1 FX3@1 FX4@1;
RIY BY FY1@1 FY2@1 FY3@1 FY4@1;
! Set the residual variances of all FX and FY variables to zero
FX1-FY4@0;
! Create the within part 创建个体内变量
WFX1 BY FX1@1;
WFX2 BY FX2@1;
WFX3 BY FX3@1;
WFX4 BY FX4@1;
WFY1 BY FY1@1;
WFY2 BY FY2@1;
WFY3 BY FY3@1;
WFY4 BY FY4@1;
! Specify the lagged effects between the ! within-person centered latent variables
! 个体内变量之间的滞后效应
WFX2 ON WFY1 WFX1;
WFX3 ON WFY2 WFX2;
WFX4 ON WFY3 WFX3;
WFY2 ON WFY1 WFX1;
WFY3 ON WFY2 WFX2;
WFY4 ON WFY3 WFX3;
! Estimate the correlations within the same wave 同一时间点个体内变量之间的相关
WFX1 WITH WFY1;
WFX2 WITH WFY2;
WFX3 WITH WFY3;
WFX4 WITH WFY4;
RIX WITH WFX1@0 WFY1@0;
RIY WITH WFX1@0 WFY1@0;
OUTPUT: TECH1 TECH9;
希望上述介绍可以帮助到你!也欢迎大家在评论区多多交流分享。
你的关注/点赞 /收藏★/分享,是最大的支持!