Mplus—路径系数差异比较

文章介绍了在Mplus中通过ModelConstraint和Modeltest两种方法比较不同路径系数(a1和a2)以及中介效应(M1和M2)是否显著的实例,包括具体的Mplus语法和结果分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. 比较a1和a2是否存在显著差异?

1.1 方法一:通过Model Constraint和New实现

Mplus语法

结果

1.2 方法二:通过Model test实现

Mplus语法

结果

2. 比较M1和M2的中介效应是否存在显著差异?

2.1 方法一:通过Model Constraint和New实现

Mplus语法

结果

2.2 方法二:通过Model Constraint和Mode Test实现

Mplus语法

结果


在中介分析中,可能会遇到以下情况:

1. 想要比较不同路径系数是否存在显著差异?

2. 想要比较不同中介效应是否存在显著差异?

在Mplus中,有两种方式可以解决上述问题,以下图的模型为例:

1. 比较a1和a2是否存在显著差异?

2. 比较M1和M2的中介效应是否存在显著差异?

1. 比较a1和a2是否存在显著差异?

1.1 方法一:通过Model Constraint和New实现

Mplus语法

TITLE: MEDIATION;

DATA: FILE IS 123.dat;

VARIABLE: NAMES ARE GENDER AGE X1-X9 Y1-Y2 A1-A32 B1-B11;

                   USEVARIABLE ARE X Y M1 M2;

                   MISSING ARE ALL (-99);

ANALYSIS: ESTIMATOR=MLR;

DEFINE: X=mean(X1-X9);

               Y=mean(Y1-Y2);

               M1=mean(A1-A32);

               M2=mean(B1-B11);

MODEL: Y ON X M1 M2;

               M1 ON X (a1);

               M2 ON X (a2);

MODEL INDIRECT: Y IND M1 X;

                                Y IND M2 X;

MODEL CONSTRAINT: NEW (DIF);

                                       DIF=a1-a2;

OUTPUT: STDYX SAMPSTAT;

结果

P值为0.001,说明a1和a2存在显著差异。

1.2 方法二:通过Model test实现

Mplus语法

TITLE: MEDIATION;

DATA: FILE IS 123.dat;

VARIABLE: NAMES ARE GENDER AGE X1-X9 Y1-Y2 A1-A32 B1-B11;

                   USEVARIABLE ARE X Y M1 M2;

                   MISSING ARE ALL (-99);

ANALYSIS: ESTIMATOR=MLR;

DEFINE: X=mean(X1-X9);

               Y=mean(Y1-Y2);

               M1=mean(A1-A32);

               M2=mean(B1-B11);

MODEL: Y ON X M1 M2;

               M1 ON X (a1);

               M2 ON X (a2);

MODEL INDIRECT: Y IND M1 X;

                                Y IND M2 X;

MODEL TEST: a1=a2;

OUTPUT: STDYX SAMPSTAT;

结果

Wald检验的P值小于0.01,说明a1和a2存在显著差异。

2. 比较M1和M2的中介效应是否存在显著差异?

2.1 方法一:通过Model Constraint和New实现

Mplus语法

TITLE: MEDIATION;

DATA: FILE IS 123.dat;

VARIABLE: NAMES ARE GENDER AGE X1-X9 Y1-Y2 A1-A32 B1-B11;

                   USEVARIABLE ARE X Y M1 M2;

                   MISSING ARE ALL (-99);

ANALYSIS: ESTIMATOR=MLR;

DEFINE: X=mean(X1-X9);

               Y=mean(Y1-Y2);

               M1=mean(A1-A32);

               M2=mean(B1-B11);

MODEL: Y ON X M1(b1) M2(b2);

               M1 ON X (a1);

               M2 ON X (a2);

MODEL INDIRECT: Y IND M1 X;

                                Y IND M2 X;

MODEL CONSTRAINT: NEW (IND1 IND2 DIF);

                                       IND1=a1*b1;

                                       IND2=a2*b2;

                                       DIF=IND1-IND2;

OUTPUT: STDYX SAMPSTAT;

结果

P值为0.506,说明两中介效应不存在显著差异。

2.2 方法二:通过Model Constraint和Mode Test实现

Mplus语法

TITLE: MEDIATION;

DATA: FILE IS 123.dat;

VARIABLE: NAMES ARE GENDER AGE X1-X9 Y1-Y2 A1-A32 B1-B11;

                   USEVARIABLE ARE X Y M1 M2;

                   MISSING ARE ALL (-99);

ANALYSIS: ESTIMATOR=MLR;

DEFINE: X=mean(X1-X9);

               Y=mean(Y1-Y2);

               M1=mean(A1-A32);

               M2=mean(B1-B11);

MODEL: Y ON X M1(b1) M2(b2);

               M1 ON X (a1);

               M2 ON X (a2);

MODEL INDIRECT: Y IND M1 X;

                                Y IND M2 X;

MODEL CONSTRAINT: NEW (IND1 IND2);

                                       IND1=a1*b1;

                                       IND2=a2*b2;

MODEL TEST: IND1=IND2;

OUTPUT: STDYX SAMPSTAT;

结果


希望上述介绍可以帮助到你!也欢迎大家在评论区多多交流分享。

你的关注/点赞 /收藏★/分享,是最大的支持!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值