代码随想录笔记-二叉树基础理论

二叉树种类

1.满二叉树

在这里插入图片描述
深度是k,有2^k-1个节点。

2.完全二叉树

除了底层全都是满的,且底层节点从左到右是连续的。
在这里插入图片描述

优先级队列其实是一个堆,堆就是一棵完全二叉树,同时保证父子节点的顺序关系。

3.二叉搜索树

1.搜索的时间复杂度是logn级别的。
2.对节点结构没有特定要求
3.二叉搜索树是有数值的了,二叉搜索树是一个有序树。
在这里插入图片描述
若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
它的左、右子树也分别为二叉排序树

4.平衡二叉搜索树

它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
在这里插入图片描述

左子树和右子树的高度差不能超过1

要了解平时使用的语言的底层逻辑

二叉树的存储方式

二叉树可以链式存储,也可以顺序存储。

链式存储方式就用指针, 顺序存储的方式就是用数组。
顺序存储的元素在内存是连续分布的,而链式存储则是通过指针把分布在各个地址的节点串联一起。

1.链式存储

在这里插入图片描述

2.顺序存储

数组来存储二叉树
在这里插入图片描述
数组存储二叉树遍历:
父节点的数组下标是 i,那么它的左孩子就是 i * 2 + 1,右孩子就是 i * 2 + 2。

二叉树的遍历方式

1.深度优先遍历

先往深走,遇到叶子节点再往回走。
(1)前序遍历(递归法,迭代法):中左右
(2)中序遍历(递归法,迭代法):左中右
(3)后序遍历(递归法,迭代法):左右中
在这里插入图片描述

栈其实就是递归的一种实现结构,前中后序遍历的逻辑其实都是可以借助栈使用递归的方式来实现的。

2.广度优先遍历

一层一层的去遍历。
层次遍历(迭代法)

广度优先遍历的实现一般使用队列来实现

二叉树的定义

class TreeNode:
    def __init__(self, val, left = None, right = None):
        self.val = val
        self.left = left
        self.right = right

–本篇谨用为本人个人学习笔记

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值