二叉树种类
1.满二叉树
深度是k,有2^k-1个节点。
2.完全二叉树
除了底层全都是满的,且底层节点从左到右是连续的。
优先级队列其实是一个堆,堆就是一棵完全二叉树,同时保证父子节点的顺序关系。
3.二叉搜索树
1.搜索的时间复杂度是logn级别的。
2.对节点结构没有特定要求
3.二叉搜索树是有数值的了,二叉搜索树是一个有序树。
若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
它的左、右子树也分别为二叉排序树
4.平衡二叉搜索树
它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
左子树和右子树的高度差不能超过1
要了解平时使用的语言的底层逻辑
二叉树的存储方式
二叉树可以链式存储,也可以顺序存储。
链式存储方式就用指针, 顺序存储的方式就是用数组。
顺序存储的元素在内存是连续分布的,而链式存储则是通过指针把分布在各个地址的节点串联一起。
1.链式存储
2.顺序存储
数组来存储二叉树
数组存储二叉树遍历:
父节点的数组下标是 i,那么它的左孩子就是 i * 2 + 1,右孩子就是 i * 2 + 2。
二叉树的遍历方式
1.深度优先遍历
先往深走,遇到叶子节点再往回走。
(1)前序遍历(递归法,迭代法):中左右
(2)中序遍历(递归法,迭代法):左中右
(3)后序遍历(递归法,迭代法):左右中
栈其实就是递归的一种实现结构,前中后序遍历的逻辑其实都是可以借助栈使用递归的方式来实现的。
2.广度优先遍历
一层一层的去遍历。
层次遍历(迭代法)
广度优先遍历的实现一般使用队列来实现
二叉树的定义
class TreeNode:
def __init__(self, val, left = None, right = None):
self.val = val
self.left = left
self.right = right
–本篇谨用为本人个人学习笔记