题目链接🔗:143. 最大异或对 - AcWing题库
分析:
这道题拿到的第一反应 笔者是思考暴力求解该怎么做 暴力求解的话方法很简单 二维循环枚举两个数 然后不断取最大值即可。这里给出暴力求解的代码:
N = int(input())
lst = list(map(int,input().split()))
res = 0
for i in range(N) :
for j in range(i+1,N) :
res = max(res,lst[j]^lst[i])
print(res)
可以看到暴力求解代码很简短 但很不幸...会TLE 只能过一半的点
那么我们考虑优化这个暴力算法。
字典树解法:
最核心的是两个函数:Add 和 Query
Add函数:从每个数的二进制形式的最高位枚举 查看在已有的字典树中在该位上是否有对应的数。什么叫对应的数?举个例子,例如当前数的二进制形式是1100,然后我们在看最高位是1,那么我们要看的就是 :在已有的字典树中,是否存在某个数的第四位(即当前数的最高位)是为1的。若存在,则将指针p指向这个数对应的idx。若不存在,则创建这样的一个数,并给予它新的idx再将指针指向它。
这样说可能有些抽象,请结合后文代码及注释理解一下~
Query函数:在建好字典树后,枚举原数组的每一个数,在字典树中,从最高位开始,为它尽可能寻找当前位不同的路径。什么意思?举个例子,如果当前被枚举的数是1100,从高位的1开始,我们要在字典树中寻找第四位为0的数,为什么?因为1^0 = 1 。这样才能对异或结果产生贡献。如果不存在这样的路径,那就没有办法了,只能沿着第四位为1向下寻找,这个过程可以看做是一个贪心的过程。
下面请结合代码和注释理解一下啦~
N = int(input())
lst = list(map(int,input().split()))
M = 3100010 # N最大是100000,而每个数都在2^31之间,所以M=N*31 + 10(防止越界)
son = [[0,0] for i in range(M)] # 用于存储字典树
idx = 0 # 字典树每个节点的记号
def Add(x) :
global idx
p = 0 # 指针,指向下一节点(即下一节点的idx值)
for i in range(30,-1,-1) : # 从最高位开始遍历
s = (x >> i) & 1 # 取出当前位的值(若是1,1&1 = 1 若是0,0&1 = 0)
if son[p][s] == 0 : # 如果当前位还没有节点,则创建节点
son[p][s] = idx + 1 # 当前节点的idx为上次idx+1
idx += 1
p = son[p][s] # 指针指向下一节点
def Query(x) :
p = 0 # 指针,指向下一节点(即下一节点的idx值)
res = 0 # 结果
for i in range(30,-1,-1) : # 从最高位开始遍历
s = (x >> i) & 1 # 取出当前位的值(若是1,1&1 = 1 若是0,0&1 = 0)
if son[p][0 if s==1 else 1] : # 关键点!如果s为1且son[p][0]不为0 或 s为0且son[p][1]不为0
res += 1<<i # 则这一位可以对结果有贡献 1<<i的意思是2的i次方
p = son[p][0 if s==1 else 1] # 指针指向下一节点
else : p = son[p][s] #若不满足上述判断 该位对结果没有贡献 指针指向下一节点
return res
for i in lst : Add(i)
res = 0
for i in lst : res = max(res,Query(i))
print(res)
有疑问请及时与我交流鸭~