问题描述 :
问题描述
小袁非常喜欢滑雪, 因为滑雪很刺激。为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你。 小袁想知道在某个区域中最长的一个滑坡。区域由一个二维数组给出。数组的每个数字代表点的高度。如下:
一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小。在上面的例子中,一条可滑行的滑坡为24-17-16-1。当然25-24-23-...-3-2-1更长。事实上,这是最长的一条。
你的任务就是找到最长的一条滑坡,并且将滑坡的长度输出。 滑坡的长度定义为经过点的个数,例如滑坡24-17-16-1的长度是4。
输入格式
输入的第一行表示区域的行数R和列数C(1<=R, C<=10)。下面是R行,每行有C个整数,依次是每个点的高度h(0<= h <=10000)。
输出格式
只有一行,为一个整数,即最长区域的长度。
样例输入
5 5
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
样例输出
25
分析:
解决一道题前 首先考虑用什么算法
对于这道题而言 最直接朴素的想法应该是对于每个点进行深搜或者广搜 最后枚举一遍答案
但是注意 对于每个点而言 只要周围的点比他小 都可以被走到 因此这样做的话时间复杂度是指数级别的 AC不掉
那么我们考虑优化
首先 搜索的思路是没有错的 那么怎样优化它呢
我们观察到一个条件 那就是 某个点只能从数值更大的点转移过来 也就是说 整个答案序列应该是递减的 => 搜索时不可能出现循环 => 搜索顺序是具有拓扑结构的 即 在一个固定答案序列中 数值较小的点一定是在数值较大的点后被搜索到 那么我们就可以使用记忆化搜索了(注意上述所说:具有拓扑序是使用记忆化搜索的必备条件)
我们用一个数组储存从每个点出发可以达到的最大长度,之后,若是从其他数值较大的点转移到这个点时,不必再往后搜索了,因为结果已经记录在数组中了,直接返回就好
注:记忆化搜索可以看作 普通搜索+大剪枝
上代码~~
n,m = map(int,input().split())
Map = []
ans = 0
for i in range(n) : Map.append(list(map(int,input().split())))
dp = [[-1 for i in range(m)]for j in range(n)]
def dfs(x,y) :
global dp
if dp[x][y] != -1 : return dp[x][y] # 搜索过了直接返回
t = 1 # 最小就是1 即为本身
for i,j in [(1,0),(0,1),(-1,0),(0,-1)] :
px = x + i ; py = y + j
if 0 <= px < n and 0 <= py < m and Map[px][py] < Map[x][y] :
t = max(dfs(px,py)+1,t) # 更新当前点能到的最远距离
dp[x][y] = t
return t
for i in range(n) :
for j in range(m) :
dfs(i,j)
for i in range(n) :
for j in range(m) :
ans = max(ans,dp[i][j])
print(ans)
看到这里 是不是对记忆化搜索有了深一步了解呢
再做一道拓展题巩固一下吧!
分析过程完全相同 只不过转移条件发生了小小的变化 下一个点必须比上一个点大1
注意一下输出格式即可
T = int(input())
def dfs(x,y) :
global dp
if dp[x][y] != -1 : return dp[x][y]
t = 1
for i,j in [(1,0),(0,1),(-1,0),(0,-1)] :
px = x + i ; py = y + j
if 0<=px<S and 0<=py<S and Map[px][py] == Map[x][y] + 1 :
t = max(t,dfs(px,py)+1)
dp[x][y] = t
return t
for _ in range(T) :
S = int(input())
Map = []
for i in range(S) : Map.append(list(map(int,input().split())))
dp = [[-1 for i in range(S)]for j in range(S)]
ans = 0 ; idx = -1
for i in range(S) :
for j in range(S) :
dfs(i,j)
for i in range(S) :
for j in range(S) :
if ans < dp[i][j] or ans == dp[i][j] and idx > Map[i][j] :
ans = dp[i][j] ; idx = Map[i][j]
txt = 'Case #{}: {} {}'
print(txt.format(_,idx,ans))