推荐文章与视频:
https://blog.csdn.net/v_JULY_v/article/details/51812459?
https://blog.csdn.net/weixin_37763870/article/details/103098532?
https://www.bilibili.com/video/BV1Fx41177ws/?spm_id_from=333.788.recommend_more_video.0
一:卷积神经网络相关概念
1.卷积神经网络:卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一,目前主要应用于图像识别领域。
2.结构方面的概念:
1.输入层:接收数据并做标准化处理,比如0-255的RGB值要除255变为0-1的值,通道是
2.隐含层:如同一个大黑箱,输入层输入什么,输出层最终给个结果
(1)卷积层:卷积层的功能是对输入数据进行特征提取,其内部包含多个卷积核,组成卷积核的每个元素都对应一个权重系数和一个偏差量(bias vector),类似于一个前馈神经网络的神经元(neuron)。卷积核是一个特征矩阵,里面有很多权重值,图像识别的物体不同,对应的卷积核也不同,刚开始权重值是随机的,然后通过训练弥合。卷
卷积操作:取数据二维表的一个矩阵和一个卷积核对应项相乘,最后求和。卷积步长是你每一次卷积操作后,移动多少位,为了最终得到和原来一样多的数,还要在边缘补0(padding)
激活函数ReLUs:和sigmoid函数一样,处理数据,不过ReLUs在卷积层用,为max(0,x)
(2)池化层:一种下采样策略,不仅可以减少数据的计算量,还可以避开一些噪点与干扰,减少过拟合,有最大值池化与平均值池化
(3)全连接层:和BP算法类似,最终经过多轮卷积与池化,变成了一维数组,我们就可以训练,预测
3.输出层:根据输入层输出结果,比如图像识别的标签
3.通道:输入的数据,比如最开始的RGB值,经过第一轮卷积操作后的结果,第二轮.....都可称为通道