折中妥协(VIKOR)多属性决策法与MATLAB应用
引言
在现实生活和工程领域中,我们常常需要在多个属性或目标之间做出决策。这种多属性决策问题涉及到不同属性的优先级和权重,通常需要一种有效的方法来帮助我们做出最佳选择。本文将介绍一种强大的多属性决策方法——折中妥协(VIKOR)方法,并演示如何使用MATLAB来应用这一方法。
目录
引言
多属性决策是解决现实问题中的重要任务之一,例如,在项目选择、供应链管理和资源分配等领域。这些问题通常涉及到多个属性或目标,例如成本最小化、质量最大化和风险最小化等。VIKOR方法是一种用于多属性决策的有效工具,它可以帮助我们在多个属性或目标之间做出权衡和选择。
多属性决策概述
关键概念
在多属性决策中,我们涉及到以下关键概念:
-
属性或目标:决策问题中要优化或考虑的不同属性或目标,可以是定性或定量的。
-
权重:各属性或目标的相对重要性,用于确定各属性或目标在决策中的权重。
-
备选方案:可供选择的决策方案,每个方案都有一组属性或目标值。
问题背景
多属性决策的背景多种多样,以下是一些例子:
-
在项目管理中,需要选择一个最适合的项目,考虑了成本、进度、质量和资源等属性。
-
在供应链管理中,需要选择最佳供应商,考虑了成本、质量、可靠性和交货时间等属性。
-
在产品设计中,需要选择最佳设计方案,考虑了性能、可维护性、成本和可靠性等属性。
折中妥协(VIKOR)方法
方法原理
折中妥协(VIKOR)方法是一种多属性决策方法,其基本原理如下:
-
构建属性矩阵:首先,为每个备选方案创建一个属性矩阵,其中包含各属性或目标的值。
-
归一化:对属性矩阵进行归一化,以消除不同属性或目标之间的量纲差异。
-
确定最佳和最差值:对于每个属性或目标,确定最佳和最差的值。
-
计算正负理想解:计算每个备选方案与最佳和最差值之间的距离,分别得到正理想解和负理想解。
-
计算综合评分:根据正理想解和负理想解的距离,计算每个备选方案的综合评分。
-
排序:根据综合评分对备选方案进行排序,选择最佳备选方案。
优点和限制
VIKOR方法具有以下优点:
-
考虑多个属性或目标:该方法可以同时考虑多个属性或目标,不需要将其简化为单一目标。
-
提供综合评分:VIKOR方法提供了每个备选方案的综合评分,帮助决策者做出明智的选择。
然而,该方法也存在一些限制:
-
对权重的敏感性:结果可能受到权重选择的影响,不同的权重分配可能导致不同的决策结果。
-
不适用于非线性问题:VIKOR方法假设各属性或目标之间是线性关系,对于非线性问题可能不适用。
MATLAB中的实现
准备数据
首先,我们需要准备决策问题的数据。这包括各个备选方案的属性或目标值和各属性或目标的权重。在MATLAB中,我们可以使用矩阵来存储这些数据。
VIKOR的MATLAB实现
以下是使用MATLAB实现VIKOR方法的示例代码:
% 定义备选方案的属性或目标值矩阵,其中每一行代表一个备选方案,每一列代表一个属性或目标
attributes