DEA模型及MATLAB应用1:CCR模型与BCC模型
引言
数据包络分析(Data Envelopment Analysis,DEA)是一种用于评估多输入多输出的生产系统效率的方法。它是一种非参数方法,广泛应用于评估各种领域的效率和绩效,包括经济学、管理学、环境科学等。本博客将介绍DEA模型的基本概念,重点关注CCR模型和BCC模型,并使用MATLAB演示如何应用这些模型来评估效率。
什么是DEA模型?
DEA模型是一种用于评估多个决策单元(Decision Making Units,DMUs)的相对效率的方法。在这里,DMUs可以是企业、医院、学校等。DEA的目标是确定哪些DMUs是有效的,即在给定的输入和输出条件下,哪些DMUs可以实现最大的产出。
DEA的核心思想
DEA的核心思想是利用线性规划技术来确定DMUs的效率得分。对于每个DMU,DEA将其视为一个生产函数,将输入转化为输出。然后,通过比较不同DMUs的产出与其输入之间的关系,可以确定哪些DMUs是最有效的。
CCR模型(Charnes-Cooper-Rhodes模型)
CCR模型是DEA模型的一种最早的形式,它假设所有的DMUs都具有相同的规模效率。这意味着所有DMUs在输入和输出上都使用相同的权重。
CCR模型的数学表达
CCR模型可以用以下数学表达式来表示:
对于第i个DMU,其效率得分可以表示为:
Efficiency i = ∑ j = 1 n λ j ⋅ x i j ∑ k = 1 m θ k ⋅ y i k \text{Efficiency}_i = \frac{\sum_{j=1}^{n} \lambda_j \cdot x_{ij}}{\sum_{k=1}^{m} \theta_k \cdot y_{ik}} Efficiencyi=∑