传送门:
https://atcoder.jp/contests/arc134/tasks/arc134_d
题意:给你一个长为2n的序列,可以在前n个数字中选出一条子序列,然后会附带给你i+n的后一半子序列(比如n为4,选了a1+a2+a4,那么会附带给你a5+a6+a8,最终序列就是a1+a2+a4+a5+a6+a8),要求该序列字典序最小。
分析:细节题。显然可以不断地在[l=1,r=n]的区间中贪心的找到最小数字后更新l,那么第一次会得到a1+a5(第一小的数字子序列a1 和 对应的子序列a5),这里要判断a5中的最小值是否小于等于a1的值。之后选择a2+a6,这里要根据a2的值与后一半被动加入的序列大小 判断a2能否加入。因为要用到每个值对应的位置,故先离散化。因为要多次查询区间最值,故预处理st表。
代码:
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int maxn=2e5;
const int maxlog=20;
int a[maxn];
int aa[maxn];
int b[maxn];
vector<int>v[maxn];
int ansp[maxn];
int table[maxn][maxlog];
int n;
set<int>s[maxn];
map<pair<int,int>,int>mp;
int cntt;
void pre()
{
memcpy(aa,a,sizeof a);
sort(aa+1,aa+2*n+1);
int cnt=unique(aa+1,aa+2*n+1)-aa-1;
for(int i=1;i<=2*n;i++)
{
b[i]=lower_bound(aa+1,aa+cnt+1,a[i])-aa;
table[i][0]=b[i];
}
for(int st=1;(1<<st)<=2*n;st++)
{
for(int i=1;i+(1<<st)-1<=2*n;i++)
{
table[i][st]=min(table[i][st-1],table[i+(1<<(st-1))][st-1]);
}
}
for(int i=1;i<=n;i++)
{
v[b[i]].push_back(i);
}
for(int i=1;i<=n;i++)
{
for(int j=0;j<v[i].size();j++)
{
int now=b[v[i][j]+n];
s[i].insert(now);
mp[{i,now}]=j;
}
}
}
int check(int x)
{
int f=0;
for(int i=1;i<=cntt;i++)
{
if(x!=b[ansp[i]+n])
{
if(x<b[ansp[i]+n])
{
f=1;
}
break;
}
}
if(f) return 0;
return 1;
}
signed main()
{
cin>>n;
for(int i=1;i<=2*n;i++)
{
cin>>a[i];
}
pre();
int l=1,r=n;
while(1)
{
if(l>r) break;
int st=__lg(r-l+1);
int x=min(table[l][st],table[r-(1<<st)+1][st]);
if(cntt)
{
if(check(x))//判断x能否加入 第一位与x不同的数字若大于x x即可all in
{
break;
}
}
int y=*s[x].begin();
if(!cntt&&y<=x)
{
int p=mp[{x,y}];
ansp[++cntt]=v[x][p];
}
else
{
for(int i=0;i<v[x].size();i++)
{
if(v[x][i]>=l)
{
ansp[++cntt]=v[x][i];
}
}
}
l=v[x][v[x].size()-1]+1;
}
for(int i=1;i<=cntt;i++)
{
cout<<a[ansp[i]]<<" ";
}
for(int i=1;i<=cntt;i++)
{
cout<<a[ansp[i]+n]<<" ";
}
}