传送门:
题面:
分析:“给出的图中有且只有一个包括奇数个节点的环”,那么显然可以设环中的一个节点权值为x,跑一遍环推出x取值后再遍历图即可。发现最终要求的等式形如x=-x+a,答案即为x=a/2=(x+-x+a)/2,故x可以取任意值代入。
代码:
#include<bits/stdc++.h>
using namespace std;
int a[100005];
int vis1[100005];
int vis2[100005];
int vis3[100005];
int f;
int ori;
int ans[100005];
struct node{
int to,val;
};
vector<node>mp[100005];
vector<node>mp1[100005];
void dfs1(int x,int fa)
{
if(vis1[x])
{
ori=x;
f=1;
return;
}
vis1[x]=1;
for(int i=0;i<mp[x].size();i++)
{
int to=mp[x][i].to;
int val=mp[x][i].val;
if(to==fa) continue;
dfs1(to,x);
if(f==0) continue;
mp1[to].push_back({x,val});
mp1[x].push_back({to,val});
return;
}
}
void dfs2(int x,int fa,int sum)
{
if(vis2[x])
{
ans[x]=sum/2;
return;
}
vis2[x]=1;
for(int i=0;i<mp1[x].size();i++)
{
int to=mp1[x][i].to;
int val=mp1[x][i].val;
if(to==fa) continue;
dfs2(to,x,val-sum);
}
}
void dfs3(int x,int fa,int res)
{
if(vis3[x]) return;
vis3[x]=1;
ans[x]=res;
for(int i=0;i<mp[x].size();i++)
{
int to=mp[x][i].to;
int val=mp[x][i].val;
if(to==fa) continue;
dfs3(to,x,val-res);
}
}
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
mp[x].push_back({y,z});
mp[y].push_back({x,z});
}
dfs1(1,0);
dfs2(ori,0,0);
dfs3(ori,0,ans[ori]);
for(int i=1;i<=n;i++)
{
printf("%d\n",ans[i]);
}
}