题意:找到至多k个值域在 [ l , r ] 的不同元素使得其异或和最小。(1 <= l <= r <= 1e12 ,1 <= k <= min(1e6 , r - l + 1))
分析:注意到 2x ^ (2x + 1) = 1,可以推出 2x ^ (2x + 1) ^ (2x + 2) ^ (2x + 3) = 0 。显然 k >= 5 时,最小值总能取到 0 。
故考虑枚举 k >= t (1 <= t <= 4) 时能够取到的最小值:
t = 1:最小值显然为 l 。
t = 2:只有当 l 为偶 或 l + 2 <= r 时,最小值能够取到1;否则,最小值为 l ^ (l + 1) 。
因为以下的 t 都满足 l + 2 <= r ,故最小值都能取到 1 ,我们只需考虑能否把最小值降为 0 。
t = 3:我们令 l 的二进制最高位为 x,显然找不到三个 值域 >= l 且 最高位 <= x 的元素使其异或和为 0 。
考虑向 x+1 借一位。比如:l = 01010,a= (1 << x) + (1 << (x + 1)) = 11000,b = l ^ a = 10010,显然a是我们能构造出的最小的的最大值。如果a <= r,那么最小值可以取到 0 。
t = 4:当 l 为偶 或 l + 4 <= r 时,最小值能够取到 0 。
代码:
int upbit(int x)
{
for(int i=60;i>=0;i--) if((x>>i)&1) return i;
}
void solve()
{
int l,r,k;
cin>>l>>r>>k;
int minn=l;
vector<int>ans={l};
if(k>=2)
{
int now=l^(l+1);
if(now==1) minn=1,ans={l,l+1};
else if(l+2<=r) minn=1,ans={l+1,l+2};
else if(now<minn) minn=now,ans={l,l+1};
}
if(k>=3)
{
int x=upbit(l);
int a=(1ll<<x)+(1ll<<(x+1));
int b=l^a;
if(a<=r) minn=0,ans={l,a,b};
}
if(k>=4)
{
if((l&1)==0) minn=0,ans={l,l+1,l+2,l+3};
else if(l+4<=r) minn=0,ans={l+1,l+2,l+3,l+4};
}
cout<<minn<<endl;
cout<<ans.size()<<endl;
for(auto x:ans) cout<<x<<" ";cout<<endl;
}