本文介绍一下微物理参数及其特点!
1.1 mp_physics=1(Kessler(仅ARW))
Warm rain - no ice
该方案仅模拟 暖雨过程,即大气中的降水由液态水构成,完全忽略冰晶、雪和冰雹等固态水成物的过程。暖雨过程通常发生在大气温度较高的区域,适用于热带和亚热带地区的降水模拟。
Idealized microphysics
这是一个 理想化的微物理方案,意味着它简化了实际大气中的微物理过程,通常用于研究和教学目的。这种简化减少了计算复杂性,但无法模拟更复杂的天气现象,如多相态的降水或冰相过程,因此不适用于需要高度精确的实际天气预报。
Time-split rainfall
该方案采用 时间分离降水(time-split rainfall) 方法,意味着降水的生成和演化被分成多个时间步骤处理。这种方法可以更好地跟踪降水过程中的变化,提高计算稳定性,尤其是在简化的物理模型中。
1.2 mp_physics=2(Purdue Lin et al.(仅ARW))
5-class microphysics including graupel
该方案属于 五类微物理方案,模拟了五种不同相态的水成物:水汽(Vapor)、云水(Cloud water)、雨水(Rain water)、冰晶(Ice crystals)、霰(Graupel),与简单的暖雨方案不同,mp_physics=2 能够模拟冰相过程,尤其是包含了霰(graupel)这种较大、较密的冰粒,通常在强对流或暴风雨中出现。这种五类微物理方案能够更准确地模拟复杂的天气现象,如混合相态降水和冰相降水。
Includes ice sedimentation and time-split fall terms
该方案处理了 冰沉降(ice sedimentation),即冰晶和霰在重力作用下从云中沉降到地面的过程。这个过程对于精确模拟高层大气中的冰相降水非常重要。
方案还包含 时间分离沉降项(time-split fall terms),意味着沉降过程被分成多个时间步长处理。这样可以更精确地追踪降水和沉降的演化,尤其是在长时间模拟中提高计算稳定性和物理准确性。
Can be used with WRF-Chem aerosols
该方案能够与 WRF-Chem 中的 气溶胶 相结合。WRF-Chem 是用于大气化学过程模拟的扩展模块,它能够模拟气溶胶对云滴形成和降水过程的影响。通过结合气溶胶,可以更加真实地模拟污染物和气候因素对天气的影响,如气溶胶对云滴大小和数量的调制作用,进而影响降水强度和分布。
1.3 mp_physics=3(WSM 3-class(仅ARW))
From Hong, Dudhia and Chen (2004)
该方案基于 Hong, Dudhia, and Chen (2004) 提出的微物理方案。Hong 和 Dudhia 在 2004 年提出了一种改进的微物理模型,旨在提高降水模拟的准确性和物理真实性。该方案在许多天气预报模式中得到了广泛应用,并被认为是一种有效的微物理处理方法。
Replaces NCEP3 scheme
mp_physics=3 方案是对 NCEP3 方案 的更新和替代。NCEP3 方案是一种较早的微物理参数化方法,mp_physics=3 在此基础上进行了改进,以提供更准确的降水和冰相过程模拟。
3-class microphysics with ice
该方案使用 三类微物理(3-class microphysics) 方法,包括:水汽(Vapor)、云水(Cloud water)、冰(Ice),相比于五类微物理方案,三类微物理方案更为简化,但仍然能够处理云和冰相过程,适用于处理中等复杂度的天气模拟。
Ice processes below 0°C
该方案专注于 0°C 以下的冰相过程。即只有在气温低于零度时,才考虑冰晶和霰的生成和沉降。这使得方案能够准确模拟冷层云中的冰相过程,而不需要在高于0°C的温度下处理这些冰相过程。
Ice number is function of ice content
冰晶数量(ice number) 是冰相物质含量的函数。即冰晶的数量与冰相水成物的总量有关。这种处理方式帮助模拟冰晶在云中的分布和变化,更好地捕捉冰相降水的形成和演变。
Ice sedimentation
方案中包含 冰沉降(ice sedimentation) 过程,即冰晶和霰在重力作用下从云中沉降。这对于模拟冰相降水和冷层云中的降水强度至关重要。
Semi-lagrangian fall terms in V3.2
在 V3.2 版本 中,方案使用了 半拉格朗日沉降项(semi-lagrangian fall terms)。这意味着沉降过程通过半拉格朗日方法来计算,这种方法能够提高沉降计算的精度和稳定性,尤其是在长时间模拟中。
1.4 mp_physics=4(WSM 5-calss(仅ARW))
Also from Hong, Dudhia and Chen (2004)
该方案同样来源于 Hong, Dudhia, and Chen (2004) 的研究。这意味着 mp_physics=4 方案继承了该研究中的改进微物理处理方法,用于提高降水和冰相过程的模拟精度。
Replaces NCEP5 scheme
mp_physics=4 方案替代了 NCEP5 方案。NCEP5 方案是一种较早的微物理模型,mp_physics=4 在此基础上进行了改进,提供了更为复杂和精确的降水模拟。
5-class microphysics with ice
该方案采用 五类微物理(5-class microphysics) 方法,包括:水汽(Vapor)、云水(Cloud water)、雨水(Rain water)、冰晶(Ice crystals)、霰(Graupel),这种方法允许更详细地模拟液态和冰态水成物的形成和演变,特别是雪和霰的过程,对于复杂天气系统(如暴风雪)尤其重要。
Supercooled water and snow melt
该方案考虑了 过冷水(supercooled water) 和 雪的融化(snow melt) 过程。过冷水是指在低于0°C的温度下仍保持液态的水,这对于冰雹和霜冻等天气现象的模拟很重要。雪的融化则涉及到雪在接触到较暖空气时变成液态水的过程,这对于降水的强度和类型有直接影响。
Ice sedimentation
方案中包括 冰沉降(ice sedimentation) 过程,即冰晶、雪和霰在重力作用下从云中沉降。这对于准确模拟冰相降水和冷层云中的降水强度是必不可少的。
Semi-lagrangian fall terms in V3.2
在 V3.2 版本 中,方案使用了 半拉格朗日沉降项(semi-lagrangian fall terms)。这种方法提高了沉降计算的精度和稳定性,尤其是在模拟长时间的沉降过程时。
1.5 mp_physics=5(NAM(仅ARW))
Designed for efficiency
该方案经过专门设计,以提高计算效率。它简化了降水和云水过程的计算,使得在大规模天气模式模拟中能够快速运行。
Advection only of total condensate and vapor
在这个方案中,只处理 总凝结物(total condensate) 和 水汽(vapor) 的平流(advection)过程。这意味着方案不直接处理云水、雨水或冰的运动,而是通过追踪总凝结物和水汽的平流来间接计算这些过程。
Diagnostic cloud water, rain, & ice (cloud ice, snow, graupel) from storage arrays
云水、雨水和冰(包括云冰、雪、霰)的计算是通过从 存储数组(storage arrays) 中诊断得出的。这些存储数组记录了大气中不同类型水成物的量,方案假设在平流过程中水和冰的比例在柱内是固定的。这样可以减少计算复杂度,但可能忽略了在平流过程中的变化。
Assumes fractions of water & ice within the column are fixed during advection
在平流过程中,假设柱内水和冰的比例保持不变。这种假设简化了计算,但可能在某些情况下导致模拟结果的偏差,尤其是在对流强烈或复杂气象条件下。
Supercooled liquid water & ice melt
方案考虑了 过冷水(supercooled liquid water) 和 冰的融化(ice melt) 过程。过冷水是指在低于0°C的温度下仍保持液态的水,冰融化则涉及冰在接触到较暖空气时转变为液态水。这些过程对降水强度和类型有直接影响。
Variable density for precipitation ice (snow/graupel/sleet) - “rime factor”
该方案为 降水冰(如雪、霰、冻雨) 使用了 可变密度,即通过 “rime factor” 来调整冰的密度。这个因素考虑了冰粒的积霜效应,能够更准确地模拟冰粒的实际密度,进而影响降水强度和沉降速度。
mp_physics=85 (nearly identical) for HWRF
对于 HWRF(Hurricane Weather Research and Forecasting model) 模式,mp_physics=85 方案与 mp_physics=5 几乎完全相同。这表明 mp_physics=85 继承了 mp_physics=5 的所有特点,适用于处理飓风模拟中的微物理过程。
1.6 mp_physics=6(WSM 6-class(仅ARW))
From Hong and Lim (2006, JKMS)
该方案源自 Hong 和 Lim (2006) 的研究,发表在 Journal of Korean Meteorological Society (JKMS) 上。Hong 和 Lim 的研究提出了改进的微物理参数化方法,以提高天气模型中的降水模拟精度。
6-class microphysics with graupel
mp_physics=5 使用了 六类微物理(6-class microphysics) 方法,包含以下水成物:水汽(Vapor)、云水(Cloud water)、雨水(Rain water)、霰(Graupel)、雪(Snow)、霜(Forst,通常包含在冰类水成物中),这种六类方法允许详细模拟不同类型的水成物,包括霰,这对于模拟复杂天气系统(如暴风雪)尤为重要。
Ice number concentration as in WSM3 and WSM5
方案中冰晶的数量浓度(ice number concentration)的处理方式类似于 WSM3 和 WSM5 方案。这意味着冰晶的数量浓度与云中的冰相水成物相关,能够准确地模拟冰晶在云中的分布。
New combined snow/graupel fall speed
该方案引入了 新的雪/霰沉降速度(combined snow/graupel fall speed) 处理。这种处理方式综合了雪和霰的沉降速度,使得模型在模拟这两种降水形式时更加精确。
Semi-lagrangian fall terms
在方案中使用了 半拉格朗日沉降项(semi-lagrangian fall terms)。这种方法用于计算降水粒子的沉降过程,提高了沉降速度计算的稳定性和精度,尤其是在长时间模拟中。
1.7 mp_physics=7(Goddard 6-class(仅ARW))
From Tao et al.
该方案基于 Tao et al. 的研究,Tao 等人的研究为微物理参数化提供了新的方法和改进,旨在提高降水过程的模拟精度。
6-class microphysics with graupel
mp_physics=7 采用了 六类微物理(6-class microphysics) 方法,包括:水汽(Vapor)、云水(Cloud water)、雨水(Rain water)、霰(Graupel)、雪(Snow)、霜(Forst),这种方法允许详细模拟多种水成物,包括霰,这对于模拟复杂天气条件和降水过程是很重要的。
Based on Lin et al. with modifications for ice/water saturation
该方案基于 Lin et al. 的微物理模型,但进行了针对 冰/水饱和度(ice/water saturation) 的修改。这意味着在模拟冰和水相过程时,方案考虑了更精确的饱和度处理,从而改进了冰相和液态水成物的模拟。
gsfcgce_hail switch for hail/graupel properties
gsfcgce_hail 选项用于控制 冰雹/霰属性 的处理。如果启用这个选项,模型将考虑冰雹的生成和特性,从而更准确地模拟冰雹与霰的过程。
gsfcgce_2ice switch for removing graupel or snow processes
gsfcgce_2ice 选项用于控制是否移除 霰或雪过程。启用此选项时,模型将不考虑霰或雪的形成和演变,适用于某些特定的模拟需求。
Time-split fall terms with melting
方案使用了 时间分离沉降项(time-split fall terms),并考虑了 融化过程(melting)。时间分离沉降项可以提高计算稳定性和精度,而融化过程则对模拟降水强度和类型至关重要。
1.8 mp_physics=8(New Thompson et al.(仅ARW))
Replacement of Thompson et al. (2007) scheme that was option 8 in v3.0
mp_physics=8 替代了 Thompson et al. (2007) 提出的方案,该方案在 v3.0 版本 中作为选项 8。这表示新的 mp_physics=8 方案是在旧方案基础上的改进版本,旨在提供更准确的微物理模拟。
6-class microphysics with graupel
该方案使用了 六类微物理(6-class microphysics) 方法,包含:水汽(Vapor)、云水(Cloud water)、雨水(Rain water)、霰(Graupel)、雪(Snow)、霜(Forst),六类方法能够详细模拟多种水成物,包括霰,适用于复杂天气条件下的降水过程。
Ice and rain number concentrations also predicted (double-moment ice)
方案中不仅模拟了冰和雨的 数量浓度(number concentrations),还采用了 双矩(double-moment) 方法。双矩方法通过同时预测降水粒子的数量和质量,提高了冰相水成物(如冰晶)和雨水的模拟精度。
Time-split fall terms
mp_physics=8 使用了 时间分离沉降项(time-split fall terms)。这种方法在计算降水粒子的沉降过程中引入了时间分离技术,以提高沉降计算的稳定性和精度。
1.9 mp_physics=9(Milbrandt-Yau 2-moment(仅ARW))
New in Version 3.2
mp_physics=9 是在 Version 3.2 中新增的微物理方案。这意味着它是相对较新的版本,包含了最新的改进和特性。
7-class microphysics with separate graupel and hail
该方案使用了 七类微物理(7-class microphysics) 方法,包含:水汽(Vapor)、云水(Cloud water)、雨水(Rain water)、霰(Graupel)、冰雹(Hail)、雪(Snow)、霜(Forst),特别地,这个方案区分了 霰(graupel) 和 冰雹(hail),并分别处理它们的属性。这种细分有助于更准确地模拟这些不同类型的冰相降水。
Number concentrations predicted for all six water/ice species (double-moment) - 12 variables
该方案对所有六种水成物/冰成物(云水、雨水、霰、冰雹、雪、霜)的 数量浓度(number concentrations) 进行预测,使用了 双矩(double-moment) 方法。这意味着方案同时预测每种水成物的数量和质量,共涉及 12 个变量,从而提高了降水过程的模拟精度。
Time-split fall terms
方案采用了 时间分离沉降项(time-split fall terms),用于计算降水粒子的沉降过程。这种方法能够提高计算的稳定性和精度,尤其在处理长时间模拟时表现良好
1.10 mp_physics=10(Morrison 2-moment(仅ARW))
Since Version 3.0
mp_physics=10 从 Version 3.0 起提供,这意味着它自该版本以来一直被使用,并在后续版本中可能进行了改进和优化。
6-class microphysics with graupel
该方案使用了 六类微物理(6-class microphysics) 方法,包括:水汽(Vapor)、云水(Cloud water)、雨水(Rain water)、霰(Graupel)、雪(Snow)、霜(Forst),六类方法允许对不同类型的水成物进行详细模拟,包括霰,这对于准确模拟各种降水过程至关重要。
Number concentrations also predicted for ice, snow, rain, and graupel (double-moment)
该方案预测了 冰、雪、雨和霰的数量浓度(number concentrations),并使用了 双矩(double-moment) 方法。这意味着模型不仅模拟了这些水成物的质量,还预测了它们的数量,提高了模拟的精度。
Time-split fall terms
mp_physics=10 使用了 时间分离沉降项(time-split fall terms)。这种方法帮助改进沉降过程的计算,增加了模拟的稳定性和准确性,特别是在长时间模拟中。
Can be used with WRF-Chem aerosols (V3.3)
从 Version 3.3 起,该方案可以与 WRF-Chem 的气溶胶模块一起使用。这使得 mp_physics=10 能够处理更复杂的气溶胶-云互动过程,为大气化学研究提供了更多的功能。
1.11 mp_physics=13(Stonybrook University(仅ARW))
From Lin and Colle (2010)
该方案基于 Lin 和 Colle (2010) 的研究。Lin 和 Colle 提出的微物理方案旨在改进对降水过程的模拟,特别是在混合相云和冰相过程中的表现。
Was option 8 in Version 3.0
在 Version 3.0 中,这个方案曾作为选项 8 提供。它在新版本中得到了更新和改进,成为 mp_physics=13。
5-class microphysics (no graupel)
该方案使用了 五类微物理(5-class microphysics) 方法,不包括霰(graupel)。包含的五类水成物为:水汽(Vapor)、云水(Cloud water)、雨水(Rain water)、雪(Snow)、霜(Forst),这种简化的分类方法对于不需要详细模拟霰过程的应用场景非常合适。
Riming intensity factor for mixed-phase
方案中包括了 混合相的积霜强度因子(riming intensity factor)。这意味着模型可以更精确地模拟混合相云中冰晶和液态水的交互过程,特别是在云滴和冰晶之间的积霜过程。
Time-split fall terms
该方案采用了 时间分离沉降项(time-split fall terms)。这种方法有助于提高沉降过程计算的稳定性和精度,尤其是在长时间的模拟中表现良好。
New in V3.3
mp_physics=13 是 Version 3.3 中的新方案,包含了对先前版本的改进和更新,以提供更准确的降水过程模拟。
1.12 mp_physics=14(WDM 5-class(仅ARW))
Version of WSM5 that is double-moment for warm rain processes
这是 WSM5 的一个版本,特别适用于 暖雨过程,并采用了 双矩(double-moment) 方法。双矩方法通过预测降水的二阶矩(如降水粒子的数量和质量)来提高对降水过程的描述精度。与单矩方法相比,双矩方法能更准确地捕捉降水的微物理过程,尤其在模拟降水强度和云滴大小分布方面表现更好。
5-class microphysics with ice
该方案使用 五类微物理(5-class microphysics) 方法,包括:水汽(Vapor)、云水(Cloud water)、雨水(Rain water)、霰(Graupel)、雪(Snow),这种五类方法允许对多种水成物进行详细模拟,包括冰晶和霰等冰相物质,有助于准确模拟不同天气条件下的降水过程。
CCN, and number concentrations of cloud and rain also predicted
方案中还包括了 CCN(云凝结核) 和 云水及雨水的数浓度预测。这意味着该方案不仅模拟了云和降水的物理过程,还预测了云凝结核的数量浓度(影响云滴形成)和云水、雨水的数浓度(影响降水强度和分布)。这些额外的预测能够提供对云和降水过程的更全面理解和更精确的模拟结果。
1.13 mp_physics=16(WDM 6-class(仅ARW))
Version of WSM6 that is double-moment for warm rain processes
mp_physics=16 是 WSM6 的一个版本,专门采用 双矩(double-moment) 方法来处理暖雨过程。双矩方法通过同时预测降水粒子的数量和质量,提高了降水过程的精确度。与单矩方法相比,双矩方法能够更准确地模拟降水强度和云滴的大小分布,尤其在处理暖雨(温度高于0°C的降水)时效果显著。
6-class microphysics with graupel
该方案使用 六类微物理(6-class microphysics) 方法,包括:水汽(Vapor)、云水(Cloud water)、雨水(Rain water)、霰(Graupel)、雪(Snow)、霜(Forst),六类方法能够详细地模拟不同类型的水成物,尤其是霰和雪,这对于复杂的降水过程和多种天气现象的模拟非常重要。
CCN, and number concentrations of cloud and rain also predicted
该方案还包括了 云凝结核(CCN) 和 云水及雨水的数浓度预测。这意味着不仅模拟了云和降水的物理过程,还预测了云凝结核的数量浓度(影响云滴的形成)和云水、雨水的数浓度(影响降水强度和分布)。这些预测可以提供对降水过程的更全面理解,改善模拟结果的精度。
声明:本文部分文字由Chat GPT生成!