数学原理—嵌入矩阵

目录

1.嵌入矩阵的基本作用 

2.嵌入矩阵的数学解释

3.嵌入矩阵在联合分布适应中的数学推导主要包括以下几个步骤

4.在JDA中,怎么得到嵌入矩阵 

5.联合分布自适应中如何得到嵌入矩阵 (另一种解释)


 

1.嵌入矩阵的基本作用 

在机器学习中,嵌入矩阵通常用于将离散的类别型变量转化为连续的向量表示。在联合分布自适应(Joint Distribution Adaptation)中,我们希望将不同源域中的数据映射到一个共享的空间中,以便于在这个共享的空间中进行分类或回归任务。其中一种常用的方法是使用嵌入矩阵(embedding matrix)。嵌入矩阵的作用是将源域和目标域的特征表示映射到同一的低维空间(降维),从而使得源域和目标域之间的特征表示具有可比性,并提高模型的泛化能力。

2.嵌入矩阵的数学解释

3.嵌入矩阵在联合分布适应中的数学推导主要包括以下几个步骤

  1. 定义源域和目标域在嵌入空间中的均值和协方差矩阵;
  2. 定义最大均值差异(MMD)作为源域和目标域在嵌入空间中的距离度量;
  3. 构造优化目标,即最小化源域和目标域在嵌入空间中的MMD。

 

4.在JDA中,怎么得到嵌入矩阵 

 

 

5.联合分布自适应中如何得到嵌入矩阵 (另一种解释)

在联合分布自适应中,嵌入矩阵通常是通过训练神经网络来得到的。这个过程通常包括以下几个步骤:

  1. 准备训练数据:首先需要准备一个包含所有需要嵌入的数据的数据集。对于自然语言处理任务来说,这通常是一个包含大量文本数据的语料库。对于其他类型的任务,可以根据具体情况准备不同的数据集。

  2. 定义嵌入模型:接下来需要定义一个嵌入模型,该模型将把数据嵌入到一个低维向量空间中。常用的模型包括Word2Vec和GloVe等。这些模型通常是基于神经网络的,其目标是最小化嵌入向量之间的距离,使得具有相似上下文的词被嵌入到相近的位置。

  3. 训练嵌入模型:使用准备好的训练数据,对嵌入模型进行训练,通常使用随机梯度下降等优化算法来最小化模型的损失函数。在训练过程中,嵌入模型会不断地更新嵌入矩阵中每个单词对应的向量。

  4. 应用嵌入矩阵:一旦嵌入模型训练完成,可以使用训练好的嵌入矩阵来表示每个单词。嵌入矩阵中每一行对应于一个单词的向量表示,可以将这些向量用于不同的自然语言处理任务,例如语言模型、文本分类和命名实体识别等。

需要注意的是,嵌入矩阵的维度和嵌入模型的超参数(例如窗口大小、负采样次数等)都会对嵌入效果产生影响,需要在训练前进行调参。

 

 

 

 

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Transformer是一种基于自注意力机制的序列到序列模型,广泛应用于自然语言处理任务。下面是Transformer的数学原理: 1. 自注意力机制(Self-Attention):自注意力机制是Transformer的核心组件之一。它通过计算输入序列中每个位置的注意力权重,来表示该位置与其他位置的关系。具体来说,对于输入序列中的每个位置,通过计算该位置与其他所有位置的相似度得到一个注意力分布,然后将该位置与所有位置的表示按照注意力分布进行加权求和得到最终的表示。这样,每个位置都可以同时考虑到其他位置的信息。 2. 多头注意力(Multi-Head Attention):为了增强模型对不同表示子空间的建模能力,Transformer引入了多头注意力机制。它通过将输入进行线性变换得到多组不同的查询、键和值,并对每组进行自注意力计算,最后将多组注意力结果进行拼接和线性变换得到最终的表示。 3. 位置编码(Positional Encoding):由于Transformer没有使用循环神经网络或卷积神经网络中的位置信息传递机制,为了让模型能够感知序列中的位置信息,Transformer引入了位置编码。位置编码是一个与输入序列长度相同的矩阵,将其与输入序列进行按元素相加,以融合位置信息。 4. 编码器-解码器结构(Encoder-Decoder Architecture):Transformer常用于序列到序列的任务,如机器翻译。为了处理这类任务,Transformer使用了编码器-解码器结构。其中,编码器用于将输入序列编码成上下文相关的表示,解码器则根据编码器的输出和先前的预测,逐步生成目标序列。 5. 位置前馈网络(Position-wise Feed-Forward Network):Transformer中的每个编码器和解码器层都包含一个位置前馈网络。该网络由两个全连接层组成,中间通过ReLU激活函数连接。位置前馈网络作用于每个位置的表示,对位置信息进行非线性变换。 6. 残差连接和层归一化(Residual Connections and Layer Normalization):为了解决深层模型训练中的梯度消失和梯度爆炸问题,Transformer使用了残差连接和层归一化。残差连接将原始输入与模型输出进行累加,保留原始信息;层归一化则对每个位置的表示进行归一化,减少表示中的协变量偏移。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Top Secret

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值