《Automatic arrhythmia detection with multi-lead ECG signals based on
heterogeneous graph attention networks》
MingHao Zhong, Fenghuan Li, Weihong Chen. Automatic arrhythmia detection with multi-lead ECG signals based on heterogeneous graph attention networks[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 12448-12471. doi: 10.3934/mbe.2022581
摘要
心律失常自动检测对心血管健康至关重要。它通常是通过测量标准多导联的心电图信号来完成的。然而,多个导联的相关性往往被忽略。此外,在现有的大多数研究中,通常需要一个广泛而复杂的特征提取过程。因此,这些挑战不仅会导致整体导联信息的丢失,而且会导致检测性能依赖于特征的质量。为了解决这些问题,本文提出了一种基于异构图注意网络的多导联心律失常检测模型。我们将多导联数据建模为异构图,整合不同信息,构建多导联数据中的导联内部和导联之间的相关性,提供合理有效的数据模型。采用双层注意力机制的异构图网络来捕捉不同信息和信息类型之间的相互作用。同时,我们的模型不需要对心电信号进行任何特征提取,避免了复杂的特征工程。大量的实验结果表明,可以很好地捕获多导联信息和复杂的相关性,从而证实了所提出的模型在多导联心律失常检测方面的显着改进。
关键词:心律失常检测;异构图形;图注意网络;多回路;心电图信号
一、介绍
世界心脏联合会的数据显示,全世界患心血管疾病的人数已超过5亿。心血管疾病被称为威胁人类健康的头号杀手,在年轻人中越来越多地发生,包括心律失常。心电图信号是诊断心律失常的一种有效方法,其中包含诊断心律异常类型的重要信息。但有些信息很难区分,需要有经验的医生。因此,心律失常的自动检测就显得尤为重要。
迄今为止,关于心律失常检测的研究有很多,包括心电信号预处理、特征提取和分类模型。在心电信号预处理中,降噪技术被广泛用于去除基线漂移、电力线干扰、电极运动、肌肉伪影等伪影。特征提取是心电信号分类的关键,但分类结果严重依赖于复杂的特征提取过程,不能适应不同的应用环境,可能导致一些重要信息的丢失。随着深度学习技术的发展,特征将变得可以自动选择,分类任务将变得可以端到端处理。这些技术也广泛应用于心律失常的检测。然而,大量的研究集中在单一导联信息上,可解释性不强。同时,多导联数据需要分析导联与导联内心跳之间的关系,如图1所示。在这个图中,心电信号包括12个导联,分别是I、II、III、AVR、AVL、AVF、V1、V2、V3、V4、V5、V6。每个导联(绿色标记)包含多次心跳信息,称为单导联心跳(红色标记)。同一时间间隔内多个导联的单导联拍构成一个多导联拍(用蓝色标记)。然而,很多研究都集中在一维导联信息或简单的多导联信息融合的诊断上,无法很好地利用多导联信号中的综合信息,如导联与心跳的关系、多导联与单导联的关系等。

综上所述,在多导联心律失常检测模型中,同时构建导联内和导联间的相关性至关重要。图中的实例(节点)通过复杂的相关性与其他节点相关联,这些相关性可用于捕获它们之间的相互关系。异构图考虑了多种类型的节点和边之间丰富的相互作用。多导联心电信号包括多导联心跳、单导联心跳和每一个导联等不同的节点类型,同时它们之间的关系也很复杂。因此,在使用多导联心电信号检测心律失常的研究中,异构图适合于对心跳数据建模。图中每个节点的嵌入由该节点和相关节点的特征共同表示。此外,通过图中相邻节点之间的信息传播,派生出交互相关信息。
为了捕获多导联心电信号数据中丰富的相互作用,本文开发了一种基于异构图注意网络(MADHGAT)的心律失常检测框架。建立了多导联心电信号的异构图模型,整合了以单导联节拍、多导联节拍和多导联为节点的不同数据,并构建了导联内和导联间的相关关系。利用异构图注意网络(HGATs)进行异构图嵌入,实现多导联心跳分类作为心律失常检测。在HGAT中实现双级注意策略允许学习相邻节点的节点级和类型级贡献。该框架不需要对心电信号进行特征提取。我们描述了大量的实验,并证明了所提出模型的有效性。下面本工作的主要贡献。
1)建立了多导联心电信号的异构图模型,以获取丰富的信息,既能综合多种信号信息,又能同时考虑导联间和导联内的相关性。
2)提出了一种基于HGATs的心律失常检测框架,用于异构图嵌入和心律失常自动分类。在HGAT中实现双级注意策略允许捕获不同心跳节点和不同节点类型之间的复杂交互。
3)据我们所知,这是第一次将多导联心电信号建模为异构图,并将HGATs用于心律失常分类。
4)大量的实验结果表明,该模型能够很好地整合多导联信息,并且在不进行特征提取的情况下应用于INCART数据集,效果显著。
二、相关工作
心电信号数据的心律失常自动检测算法通常有三个主要任务:数据预处理、特征提取和分类[1]。预处理操作包括数据去噪[2]和心跳分割[3]。特征提取是心电信号分类的关键。从心电信号的时空形态中提取特征,如QRS复合体[4]、r峰[5]、ST段[6]、香农熵[7]、T持续时间[8]等。最后,通过机器学习方法将信号分类为不同的类型,如多层感知器(mlp)[9]、k近邻[10]、深度学习方法[11,12]和支持向量机[13]。然而,分类结果严重依赖于复杂的特征提取过程,不能适应各种环境。此外,缺少重要信息可能导致误诊。深度学习方法在自动特征提取中发挥着重要作用,被广泛应用于端到端模式下的特征提取[14-16]或心律失常检测[17-19],无需任何手工特征。深度学习方法减少了人工工作量,提高了检测性能。如图1所示,多导联心电信号之间的相关性是检测心律失常的重要信息。然而,现有的研究大多将节拍视为独立的信息,忽略了节拍之间的导内相关性和导间相关性。
心电信号表现为时间序列数据,因此心跳间的导联相关性主要体现在时间属性上,包括统计时间特征[20-22]和时间依赖性[23-25]。考虑了单导联信号和多导联信号的时间特性。Mahajan等[22]收集时频数据以及线性和非线性特征进行单导联心电信号分类。Yao等[26]开发了一种基于注意机制的时间增量网络。它考虑了多导联心电信号的时空特征。
Che等人[27]开发了一种深度学习框架,该框架将变压器网络集成到卷积神经网络中,以捕获多导联心电信号的时间特征。与单导联心电信号相比,多导联心电信号包含更复杂、更丰富的心跳信息,有助于实现更准确的心脏病诊断。然而,一些研究只考虑了心电信号的时间特性,而忽略了多导联数据的导联间相关性以及多导联与单导联心跳的相关性。
对于基于多导联心电信号数据的心律失常自动诊断,已经提出了多种工作,如特征融合[28-30]和导联间相关性[31-33]等方面的研究。Han和Shi[34]利用多导联残差神经网络对12导联心电信号数据进行特征融合,检测并定位心肌梗死。Sepahvand和Abdali-Mohammadi[35]开发了一种多导联心电图个人识别系统,该系统在时频域中计算多导联信号数据之间的内相关性和相互相关性,以估计功能依赖性。不同的导联对应心脏活动的不同方面。这些工作考虑了多导联信号,从而提高了心律失常诊断的准确性。然而,多单导联信号的特征融合不能系统地利用导联间信号的相关性。此外,前面提到的大多数研究都没有考虑到心跳之间的导联相关性。
图神经网络包括图卷积网络[36]、图注意网络[37]、图时空网络[38]等。它们被成功地应用于许多任务,如计算机视觉[39]、交通预测[38]、蛋白质界面预测[40]和疾病预测[41]。然而,目前尚无多导联心电信号自动诊断心律失常的相关研究。将图神经网络中的每个元素作为一个节点,元素之间的关系用边表示。同构图[42,43]的结构相对简单,只包含单一类型的节点和边。因此,同构图的图神经网络只需要聚合单一类型的邻居来更新节点的嵌入。例如,提出了一种图卷积神经网络来诊断COVID-19肺炎[44]。然而,考虑到不同节点和边缘之间复杂的相互作用,现实世界中的大多数图都应该构造成异构图,以避免信息丢失。相较于同构图,异构图中在不同关系中相邻关系的差异性应当考虑在内。例如,一种带有变分图自编码器的异构网络被用于mirna -疾病关联预测[47]。因此,考虑到与多导联心电信号相关的各种信息类型和关系,可以构建异构图来捕获多导联心电信号数据之间的复杂关联,从而实现心律失常自动诊断,从而提高诊断性能。
三、多导联心电信号数据的异构图
我们提出了一个基于HGAT的心律失常自动检测框架,它充分利用了心跳之间的导联内相关性和导联之间的导联间相关性,这些相关性基于沿图传播的信息。首先提出了一种灵活的异构图,对多导联心电信号数据进行建模,整合丰富的信息,并捕获多导联、单导联和多导联之间的依赖关系,如图2所示。然后,我们提出了一种具有双重关注策略的异构图网络来嵌入异构图,用于心律失常检测。HGATs考虑了信息异质性。此外,注意策略能够学习不同心跳节点和节点类型的权重。

以往的研究仅仅将多导联心跳作为多导联心电信号数据分析检测心律失常的数据对象。除多导拍外,还考虑了两种附加信息,即多导拍和单导拍。如图2所示,异构图G = (V;E)的模型构造为:多个引线,多导拍
和单导拍
,三者作为为节点,其中
,边E的集合表示它们之间的相关性,K = D × N。
其中,对于多导联节点,对同一导联的所有单导联拍的对应样本进行均值池化,实现了每个导联的嵌入。对于每个多导拍节点,其表示是通过汇集构成该多导拍的所有单导拍的相应样本来获得的。为了更好地理解构造的图,图3显示了一个示例。假设数据集中有三个多导拍,即A1, A2和A3。整个曲线图包含12个导联,每个红框表示一个单导联节拍。对于每个单导拍节点,其特征由其样本表示。对于每个多导拍节点,以A3为例,它通过汇集所有组成该多导联心跳的单导联心跳来表示。对于多导联的节点,每一个导联通过汇集该导联中A1, A2和A3的单导联节拍来表示。

到目前为止,ECG信号的最大多导联数通常为12,因此D的最大值为12。我们将每个多导拍分配给这些D导拍。因此,一个多导联心跳和每个单独导联之间的边缘已经建立,以便通过使用沿图的信息传播来分析单个导联对心律失常检测和导联间相关性的全局意义。
每个导联的心跳片段作为单导拍的节点。一个单导拍的嵌入是采样的时间序列,一个多导拍的嵌入是多个单导拍在这个多导拍中的平均池化。如果一个多导联拍中包含单导联拍,则建立一个多导联拍和一个单导拍之间的边缘,提供多导拍与相应的单导拍之间的相关性信息,以及每个单导拍对心律失常检测的局部意义。
进一步加强多导联信息和信息传播,同样考虑单导拍之间的关系。如果两个单导拍之间属于同一导联,则建立边缘,这提供了导联间相关性的信息。将多导联、单导联心跳及相关关系结合起来,丰富了多导联心跳的信息,极大地方便了心律失常的检测。
四、心律失常检测的异构图注意网络
利用HGAT[48]进行异构图嵌入,然后进行心律失常检测,如图4所示。HGAT通过异构图卷积来考虑导联和节拍信息的异构性。此外,HGAT中的双层注意机制可以捕获和学习异构图中相邻节点之间的节点级和类型级重要性。最后,通过softmax层预测多导拍的标签。

1、异构图卷积
对于异构图的构建,已经建模了三种类型的节点:多导联、多导联节拍和单导联节拍。虽然它们的特征空间可以相同,通过这三类节点的特征空间拼接,可以采用图卷积网络进行异构图嵌入。然而,由于没有考虑不同节点类型的异构性,性能将会下降。为了解决这个问题,我们采用了一种异构图卷积网络,该网络考虑了不同类型节点之间的区别,并对每个节点进行了各自的邻接和投影并将矩阵变换到隐藏空间,如式(4.1)所示。
其中σ()为激活函数。是归一化邻接矩阵
的子矩阵,是每个类型pi的邻接矩阵,其行和列分别表示所有节点及其邻接节点的类型为pi。由
表示的节点的隐嵌入是通过使用相应的变换矩阵
集合不同类型pi的相邻节点
的信息来学习的。
是第
层隐藏嵌入的维数。变换矩阵
考虑了投射到隐藏空间
的不同特征空间的独特性。
2、双层注意力机制
对于图中的一个节点,其相邻节点可能包含不同类型的节点。一般来说,不同类型节点所包含的信息具有不同的贡献程度。我们知道,心电图中的每一个导联对心律失常的检测都有不同的作用。不同的权重有利于更好地突出心电信号数据中的重要特征。为了更有效地获取有关相邻节点的信息,采用双级关注策略来确定节点级和类型级的不同贡献。
(1)类型级注意力
类型级注意用于捕捉不同节点类型的重要性,例如多导拍或单导拍。具体来说,给定一个节点v,用相邻节点嵌入与类型为pi的和来表示类型为pi的嵌入
。
是归一化邻接矩阵
的一个元素,其中行为v,列为v'。然后,利用当前节点嵌入hv和类型嵌入hpi,根据Eq(4.2)计算类型级注意力得分:
其中σ(·)为激活函数,||为“连接”。µpi是类型pi的注意向量,是在模型训练过程中习得的。
最后,将每种类型的注意力得分通过Eq(4.3)归一化,得到类型层面的注意力权重。
(2)节点级注意力
不同的邻居也有不同的贡献。在降低噪声节点重要性的同时,开发了节点级关注来捕获不同相邻节点的权重。这是减少心电信号数据中无用信息的好方法。具体而言,对于某一类型为pi的节点v及其相邻类型为pj的节点,根据Eq(4.4),利用
和类型级关注权重
计算节点v'的节点级关注得分。
其中是pj类型的节点级关注向量,是在模型训练过程中习得的。然后,每个相邻节点的节点级注意力得分通过Eq(4.5)归一化。
最后,通过将Eq(4.1)中的传播规则替换为Eq(4.6)中的传播规则,将节点级和类型级双重关注策略集成到异构图卷积网络中。
式中表示注意矩阵,其中每个元素都是Eq(4.5)中的
.
3、模型训练
构建图中节点的嵌入用L层HGAT表示。因此,多导拍节点由邻居节点信息补充。最后,将多导联拍嵌入输入softmax层进行心律失常分类,如Eq(4.7)所示。
模型训练采用L2范数交叉熵损失,如Eq(4.8)所示。
式中,C为类别数,Dtrain为多导拍数据的训练集,Y为类别矩阵,Θ为模型参数,η为正则化系数。最后,采用梯度下降算法对模型参数进行优化。
五、实验
1、实验步骤
(1)数据集
我们专注于多导联心跳分类。本研究使用的心律失常记录来自圣彼得堡INCART 12导联心律失常数据库(INCART数据库)[49],其中包括来自32名冠状动脉疾病调查患者的75条带注释的记录。每个录音是30分钟长采样在257赫兹,由12个标准导联,另外每个节拍在录音中包含一个节拍注释在中间的QRS复杂。心电信号的大部分特征都以QRS复合体为中心。如果间隔时间较长,则会包含较多的噪声信息,或者间隔时间较短,则会导致特征不足。因此,以QRS复合体中间为中心的150个样本作为每个单导联拍的表示,它可以覆盖QRS复合体的特征。为了验证所提出的模型,从INCART数据库中随机选择了1720个具有7个详细类别的心跳。数据集的统计信息如表1所示。
(2)评价指标
实验分析采用五重交叉验证。心跳在上面描述的数据集中随机采样。在每个实验中,一个部分作为测试数据,另外四个部分作为训练数据。经过5次实验,将5个混淆矩阵相加得到一个总体混淆矩阵,然后根据相应的公式计算评价指标,包括总体准确度(Ov.Acc)、准确度(Acc)、灵敏度(Sen)、精密度(Ppv)、特异度(Spe)和F1-score。
其中TP、TN、FP、FN分别为真阳性、真阴性、假阳性、假阴性率。并且,在Eq(5.1)中,n表示心律失常类别的数量,(T Pr)i表示每个类别中正确预测的数量,M表示所有样本的数量。
(3)实现细节
根据以往的研究,我们选择1、2、3、12作为D的值,D是实验分析的引线数。II导联和V1导联心电图信号QRS和T波清晰,P波较大。P波可以指示心房电位变化,反映心房兴奋。T波反映心室兴奋后的去极化过程,具有诊断意义。V5导联心电图信号清晰,QRS波清晰。铅II的R波总是大于S波。导联V1以负波为主,导联V5以R波为主。对这三种导联进行信息融合,可以更好地检测出QRS波群的不同内容。因此,我们选择单导联II导联、V1导联和V5导联进行实验分析,并利用它们的组合进行多导联心电分类。
对于模型训练,MADHGAT的隐维设置为512,层数设置为2。学习率设为0.003,Dropout率设为0.8,正则化系数η设为5 ×10−8。为避免过拟合,采用L2正则化方法。
2、基线方法
略
3、结果分析
(1)单导联心电图分类
单导联信号是多导联信号的一种特殊情况。我们执行心律失常检测三个单导联信号,即导联II, V1和V5。表2-4显示了它们的混淆矩阵和性能结果,这是应用我们的模型进行单导联实验得到的。总体精度分别为0.9413、0.9378和0.9378。与不包含任何手工特征的PCANet和RandNet(表5)相比,我们的方法将所有单导联的总体准确性平均提高了约2%。在Lead V1的情况下,我们的性能相对于RandNet提高了3%,这表明我们的方法利用了单个Lead数据和我们构建的异构图。由于多导拍是由它们的单导拍组成的,所以在单导实验中,多导拍和它们对应的单导拍之间的关系是无用的。但是,我们还是要考虑同一引线的心跳以及引线与心跳之间的关系,使模型仍然可以考虑全局和局部信息。在基线模型中,PCANet和RandNet只能在一个引线的情况下考虑自己的情况,这反映了我们模型的优势。
(2)多导联分类
对二导联、三导联和十二导联心电信号数据进行多导联分类的实验结果。表6-8给出了双导联MADHGAT模型的混淆矩阵和分类结果。总体精度分别为0.9494、0.9523和0.9547。显然,双导联信号的性能优于单导联信号。
表9显示了带有三导联信号的MADHGAT模型的混淆矩阵和分类结果。总体精度为0.9552。可以注意到,三导联的结果优于两导联的结果。然而,我们可以发现,三导联实验的结果与V1和V5导联实验的结果相似。对此,我们认为关键原因是心跳采样有限,这导致实验结果略有不同。表10给出了MADHGAT模型12导联信号的分类结果。总体精度为0.9721。它比三铅实验高出近2%。
六、结论
本文提出了一种新的基于HGAT的多导联心律失常检测模型。将多导联心电信号建模为异构图,以整合丰富的信息。此外,构建了引线内和引线间的相关性,以捕获多引线信号之间复杂的相互作用。本工作提供了一个合理有效的数据模型,利用异构图神经网络的双级关注策略来量化不同类型信息的贡献,从而提高检测性能。同时,我们的模型不需要对心电信号进行任何特征提取过程,避免了复杂的特征工程。
虽然所提出的模型在心律失常自动检测方面表现出色,但它具有转导性。训练过程需要大量的内存。针对这个问题,在未来,我们将重点开发一种基于图神经网络的归纳学习模型,可以处理更多的数据。