【图像识别】openCV基础知识

该文介绍了OpenCV在图像处理中的基本操作,包括导入库、图片展示、生成随机整数、图像通道分离与合并、彩色图转灰度图、图像二值化以及图像的加减乘除运算。此外,文章还探讨了图像融合的小任务,强调了在处理过程中需要注意的细节和数据类型转换的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像处理基础

一、使用OpenCV前要准备的工作

1.先导入需要用到的库

import numpy as np
import matplotlib.pyplot as plt
import cv2 as cv

2.自定义,图片展示函数

定义好了,调用方便。

def show(img):
    if img.ndim == 2: #这句话是用来判断是否为灰度图的
        plt.imshow(img, cmap='gray', vmin=0, vmax=255)
    else:
        plt.imshow(cv.cvtColor(img, cv.COLOR_BGR2RGB))

二、开始学习常用函数

1.生成随机整数

random_int = np.random.randint(low, high=None, size=None, dtype=int)

①. 函数说明

low:生成的随机整数范围的下限(包含),默认为0。
high:生成的随机整数范围的上限(不包含)。
size:生成的随机整数的形状,可以是整数、元组或列表,默认为None。
【参数为 (x,y)生成的整数为二维的,就是灰度图嘛; (x,y,z)生成的整数为三维的,那就是彩色图咯!】
dtype:生成的随机整数的数据类型,默认为int。
a. 生成一个范围在0到9之间(包含0,不包含9)的随机整数:
random_int = np.random.randint(0, 9)
print(random_int)
b. 生成一个范围在5到10之间(包含5,不包含10)的2x3的随机整数矩阵:
random_int_matrix = np.random.randint(5, 10, size=(2, 3))
print(random_int_matrix)

<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KevinGuo457

哈哈哈资助我买两包辣条叭

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值