指数随机图模型ERGM模型ergm模型

指数随机图模型学习方法:

1.参考书目

《指数随机图模型导论》本书包含全部代码,可以根据书中提供代码进行学习,事半功倍(用到R)。9b6b55be508d4d9485a5187721c3cb25.jpg

 

《社会网络指数随机图模型理论、方法与应用》侧重理解模型,更好解释运行结果。c4541282d5da4c7898790d24df8a6117.jpg

 

2.实战数据。仅仅理解模型是不够的,需要用别人的数据进行实战,学会代码的书写及应用,这样更换为自己的课题时才能得心应手。754e9ce05a414c4c8f2611b018739258.jpg

 

ERGM(Exponential Random Graph Models)是一种用来建模和分析复杂的网络结构的统计模型。在R语言中,我们可以使用ergm包来进行ERGM模型的建模和分析。 首先,需要安装和加载ergm包。可以使用以下代码来安装和加载ergm包: ``` install.packages("ergm") library(ergm) ``` 接下来,我们需要准备网络数据。假设我们有一个包含节点和边的网络,可以创建一个邻接矩阵或一个边列表来表示网络。例如,我们有一个5个节点的网络,可以使用以下代码来创建邻接矩阵: ``` network <- matrix(0, nrow=5, ncol=5) network[2,1] <- 1 network[3,1] <- 1 network[3,2] <- 1 network[4,1] <- 1 network[4,2] <- 1 network[4,3] <- 1 network[5,1] <- 1 network[5,4] <- 1 ``` 然后,我们可以使用ergm函数来拟合一个ERGM模型。通过设置模型的依赖关系,我们可以选择使用不同的网络属性作为模型的解释变量。例如,我们可以使用节点度数和三角关系作为模型的解释变量: ``` model <- ergm(network ~ edges + nodematch("nodefactor", levels=5)^2) ``` 最后,我们可以使用summary函数来查看ERGM模型的结果。这将给出模型的系数估计、标准误差以及p值等信息: ``` summary(model) ``` 除了以上的基本步骤外,ERGM模型还有更多的高级功能,例如探索网络的结构特征、计算网络的度中心性和接近性等。研究者可以根据具体需求和研究目的来选择合适的模型和方法。 希望以上回答能对你理解和使用R语言的ERGM模型有帮助!
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值