pycharm+anaconda配置pytorch(CUDA10.2)

目录

  • 进入anaconda终端窗口
  • 查看虚拟环境列表
  • 创建虚拟环境
  • 进入虚拟环境
  • 在[pytorch官网](https://pytorch.org/get-started/locally)找到与自己电脑匹配的配置
    • 查看CUDA
    • 安装pytorch
      • 找到python文件
      • 将pytorch安装到指定位置
  • 打开pycharm进行配置
  • 输入以下代码验证是否配置成功

进入anaconda终端窗口

在这里插入图片描述

查看虚拟环境列表

conda env list

在这里插入图片描述

创建虚拟环境

conda create -n env-name python=3.8(可省略)

进入虚拟环境

conda activate env-name

在这里插入图片描述

### 回答1: 在anaconda+pycharm环境下配置pytorch可以按照如下步骤进行: 1. 打开anaconda,创建一个新的虚拟环境,例如命名为“pytorch_env”。 2. 在命令行中使用conda activate pytorch_env命令激活虚拟环境。 3. 在命令行中使用conda install pytorch torchvision cudatoolkit=10.2 -c pytorch命令安装pytorch和必要的依赖。 4.pycharm中创建一个新的项目,并在项目中创建一个新的python文件。 5. 在python文件中导入pytorch库,并开始编写代码。此时可以利用pycharm的代码补全功能来快速编写代码。 6. 运行代码,如果无误则完成了在anaconda+pycharm环境下配置pytorch的操作。 ### 回答2: 在Anaconda Pycharm环境下进行PyTorch配置,需要执行以下步骤: 第一步:安装Anaconda,选择Python3.6的版本即可,并将Anaconda添加到PATH环境变量中。 第二步:安装PyTorch 使用以下命令进行PyTorch安装。 CPU版本:conda install pytorch-cpu torchvision-cpu -c pytorch GPU版本:conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia 在Terminal窗口中输入该命令即可进行安装,安装完成后可通过 import torch print(torch.__version__) 进行验证,确认PyTorch是否正确安装。 第三步:安装PyCharm 官网下载安装标准版Pycharm即可。 第四步:创建Python Project 在Pycharm中创建Python Project,并选择已安装的Python版本。 第五步:配置PyTorch环境 打开Pycharm的Terminal窗口,输入以下命令进行环境安装: conda activate <pytorch_env> 其中,pytorch_env为PyTorch安装环境的名称。 以上配置完成后,Anaconda Pycharm环境下的PyTorch配置就完成了,可以使用PyTorch进行开发。 ### 回答3: anaconda是一个流行的Python环境和包管理器,PyCharm是一个常用的Python IDE。PyTorch是一个深度学习框架。在使用PyTorch进行深度学习的过程中,搭建好适合自己的环境是一个必要的步骤。这里介绍在anaconda pycharm环境下的pytorch配置方法。 第一步:安装anaconda 官网下载对应操作系统版本的anaconda后,按照安装提示操作即可。 第二步:创建conda虚拟环境 使用以下命令创建一个名为pytorch的conda虚拟环境: conda create --name pytorch python=3.8 该命令会创建一个Python版本为3.8的conda环境。 第三步:激活并进入虚拟环境 使用以下命令激活名为pytorch的conda虚拟环境: conda activate pytorch 该命令会激活名为pytorch的conda虚拟环境。 第四步:安装pytorch 在激活的虚拟环境下,使用以下命令安装PyTorch: conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia 该命令将安装最新版本的PyTorch和TorchVision并配合CUDA 11.1版本进行编译。 第五步:在PyCharm中使用虚拟环境 在PyCharm中打开项目,依次选择File->Settings->Project->Python Interpreter,然后点击下拉菜单选择“Add”,在弹出的窗口中选择“Conda Environment”,并在“Interpreter”处选择刚刚创建的虚拟环境“pytorch”。点击“Ok”后,PyCharm将开始配置虚拟环境。配置完成后,在PyCharm的“Terminal”中即可使用虚拟环境中安装的PyTorch进行深度学习模型的训练等任务。 总之,以上就是在anaconda pycharm环境下的pytorch配置方法。要么自己去搭建,要么使用已有的工具,搭建好适合自己的环境是重中之重。希望以上方法能够帮助到大家,让使用PyTorch进行深度学习的过程更加高效便捷。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值