引言
动态预测是指预测动态系统未来行为的任务,设计学习控制系统演化的潜在动态,以对其未来状态做出准确的预测。高斯diffusion在正向过程中使用高斯噪声不同程度地破坏数据,然后通过反向过程对随机输入进行去噪以得到高度真实的样本。然而,在高维度上将噪声映射到真实数据十分具有挑战性,因此扩散模型的计算成本非常高。而且,扩散模型多用于静态图像,即使是能生成真实样本的video diffusion model也没有明确利用数据的时间性质来生成准确的预测。
本文贡献:
- 从扩散模型的角度研究概率时空预测。
- 提出了用于多步骤预测和长期视野的DYffusion框架,此框架通过时间归纳偏差来加速训练和降低内存要求。并且探讨了该方法的理论含义,DYffusion是学习动力系统解的隐式模型,cold sampling可以解释为它的欧拉方法解。
- 从预测性能和算力要求两个方面与conditional video diffusion models等先进的概率方法进行对比试验。结果表明,相较于高斯扩散模型,DYffusion提高了计算效率。
背景
问题提出
给定一组快照数据集(
由空间维度(例如纬度、经度和大气高度)和通道维度(例如速度、温度和湿度)组成,表示数据所在的空间),概率预测的任务是学习条件分布
,用l张过去的快照来预测接下来连续的h个快照。本文从单个初始条件开始进行预测任务,即学习
。
扩散过程
为了将扩散步骤的状态和的时间步区分开,我们用上标n来表示扩散步状态
。这个操作可以概括为,假设我们有一个退化算子D,以数据点
为输入,针对不同程度的退化比例输出
,
。通常,D加入带有递增方差的高斯噪声使得
。使用
参数化一个去噪网络,训练
来恢复
。扩散模型可以通过考虑
来根据输入动态进行条件设定。在动态预测中,可以训练扩散模型以最小化目标: