[LeetCode刷题] 62.不同路径--Java实现

这篇博客详细介绍了LeetCode第62题《不同路径》的解题方法,主要提供了两种Java实现:动态规划和递归。动态规划方法通过创建二维数组记录每一步的状态,时间复杂度为O(mn),空间复杂度同样为O(mn)。递归方法虽然简洁,但由于重复计算会导致超时。博客还给出了多个示例和解题提示,帮助读者理解解题过程。
摘要由CSDN通过智能技术生成

[LeetCode刷题] 62.不同路径–Java实现

刷题汇总

题目链接

https://leetcode-cn.com/problems/unique-paths/

题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:
在这里插入图片描述
输入:m = 3, n = 7
输出:28

示例 2:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向下

示例 3:
输入:m = 7, n = 3
输出:28

示例 4:
输入:m = 3, n = 3
输出:6

提示:
1 <= m, n <= 100
题目数据保证答案小于等于 2 * 109

解题思路

1.动态规划

题目要求从网格的左上角走到网格的右下角,每次只能往下或往右前进一个。假设一个m * n的网格,若是往右走一步,则剩下的问题可看做是(m-1) * n的网格,同理,若是往下走一步,则剩下的问题可看做是m * (n-1)的网格。

因此我们可以写出递归关系:f(i, j) = f(i-1, j) + f(i, j-1)

最终可以递归到1*1的网格,只有1个路线。

时间复杂度:O(mn),空间复杂度:O(mn)。

Java代码实现:

class Solution {
    public int uniquePaths(int m, int n) {
        if (m==1|| n==1) return 1;
        //新建一个二维数组
        int[][] arr = new int[m+1][n+1];
        //循环遍历
        for(int i=1;i<=m;i++){
            for(int j=1;j<=n;j++){
                //给边界赋值
                if(i==1) arr[i][j] = 1;
                //给边界赋值
                else if(j==1) arr[i][j] = 1;
                //其余网格累加
                else arr[i][j] = arr[i-1][j] + arr[i][j-1];
            }
        }
        //输出结果
        return arr[m][n];
    }
}

2.递归(会超出时间限制)

递归和动态规划思路大体相同,只是解决手段不同。

上面的方法中采用了一个二维数组去模拟实际过程中网格的前进位置。

递归的方法比较简单,不断的调用自身,直到迭代到m=1,n=1,并逆向累加,最后输出结果。这个方法虽然代码简单,但因为不断的调用自身,花费较长的时间,会超出力扣的判题时间限制。

Java代码实现:

class Solution {
    public int uniquePaths(int m, int n) {
        if(m==1 && n==1)
            return 1;
        if(m==1)
            return uniquePaths(m,n-1);
        if(n==1)
            return uniquePaths(m-1,n);
        return uniquePaths(m-1,n) + uniquePaths(m,n-1);
    }
}

相关试题

刷题汇总
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值