前缀和与差分

差分

AcWing 100.IncDec序列
本题的突破口在于对操作“每次可以选择一个区间 [l,r],使下标在这个区间内的数都加一或者都减一。”的简化。对于区间同时增减的问题,可以使用差分,将其转化为对于两个端点的操作。
那么接下来问题就转化为了:对于原序列的差分序列,每次找出两个非0数,进行一加一减的操作,最终使得b[2~n]全部变为0。那么最后对于方案数量的求解,只需要探讨最后b[1]的取值范围即可。
综上所述,本题只要想到第一步的转化就变得不再困难,后面的思路也很容易想到,在此不再赘述,代码如下:

#include<iostream>
#include<cmath>
using namespace std;
const int N=1e5+5;
long long a[N],c[N];
int main(){
    int n;
    cin>>n;
    for(int i=1;i<=n;i++){
        cin>>a[i];
        c[i]=a[i]-a[i-1];
    }
    long long ans=0,z=0,f=0;
    for(int i=2;i<=n;i++){
        if(c[i]>0) z+=c[i];
        else f-=c[i];
    }
    ans=max(z,f);
    cout<<ans<<endl<<abs(z-f)+1;
    return 0;
}

前缀和

例题1:AcWing 99.激光炸弹
这题并不难做,关键在于想到直接在5000*5000的矩阵内运算,以及正确地实现二维前缀和与差分。
例题2:AcWing 126.最大的和
由于这题的数据范围极其水,我们可以采用O(n^4)的暴力算法来枚举每一个子矩形。
代码如下:

#include<iostream>
#include<cstdio>
using namespace std;
const int N=105;
int a[N][N];
int main(){
    int n;
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++) scanf("%d",&a[i][j]);
    }
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){//复习一下二维前缀和的算法
            a[i][j]=a[i][j]+a[i-1][j]+a[i][j-1]-a[i-1][j-1];
        }
    }
    int ans=-1e9;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            for(int x=i;x<=n;x++){
                for(int y=j;y<=n;y++){
                    ans=max(ans,a[x][y]-a[x][j-1]-a[i-1][y]+a[i-1][j-1]);
                }
            }
        }
    }
    printf("%d",ans);
}

例题3:AcWing 121.赶牛入圈
这题的综合性比较强,需要用到多个基础算法。毫无疑问,这题可以考虑使用二分答案,二分正方形的边长,通过check函数枚举,看能否实现目标,显然这个枚举计算的过程可以通过计算二维前缀和实现。但由于数据范围过大,我们还要使用离散化。将坐标离散化之后再求前缀和。至于判断正方形是否可以触碰到一些点,则可以通过双指针调取坐标的真实值来计算两点间距离。具体实现见代码:

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
const int N=1010;
struct Node{
    int x,y;
}points[N];
int sum[N][N];
vector<int> lsh;
int c,n;
int get(int x){
    return lower_bound(lsh.begin(),lsh.end(),x)-lsh.begin();
}
bool check(int len){
    for(int x1=1,x2=1;x2<lsh.size();x2++){
        while(lsh[x2]-lsh[x1]+1>len) x1++;//双指针
        for(int y1=1,y2=1;y2<lsh.size();y2++){
            while(lsh[y2]-lsh[y1]+1>len) y1++;
            if(sum[x2][y2]-sum[x2][y1-1]-sum[x1-1][y2]+sum[x1-1][y1-1]>=c)
            	return true;
        }
    }
    return false;
}
int main(){
    cin>>c>>n;
    lsh.push_back(0);
    for(int i=1;i<=n;i++){
        int x,y;
        cin>>x>>y;
        points[i]={x,y};
        lsh.push_back(x);
        lsh.push_back(y);
    }
    sort(lsh.begin(),lsh.end());
    lsh.erase(unique(lsh.begin(),lsh.end()),lsh.end());
    for(int i=1;i<=n;i++){
        int x=get(points[i].x),y=get(points[i].y);
        sum[x][y]++;
    }
    for(int i=1;i<lsh.size();i++){
        for(int j=1;j<lsh.size();j++){
            sum[i][j]+=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1];
        }
    }
    int l=1,r=10000;
    while(l<r){
        int mid=(l+r)>>1;
        if(check(mid)) r=mid;
        else l=mid+1;
    }
    cout<<l<<endl;
}

时间复杂度的分析特别强调一下:由于双指针算法的存在,check函数的时间复杂度实际上是O(n ^ 2),因为两个指针走过的值的和不会超过2n。所以总的时间复杂度为O(n ^ 2 * log x),约为3250000的计算量,可以通过。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值