Java之数据结构与算法:二叉树的遍历、查找和删除

介绍

为什么需要树这种数据结构?

 数组存储方式、链式存储方式和树存储方式的对比:

  1. 数组存储方式:
优点缺点
通过下标方式访问元素,速度快。对于有序数组,还可使用二分查找提高检索速度。如果要检索具体某个值,或者插入值(按一定顺序)会整体移动,效率较低。
  1. 链式存储方式:
优点缺点
在一定程度上对数组存储方式有优化(比如:插入一个数值节点,只需要将插入节点,链接到链表中即可, 删除效率也很好)。在进行检索时,效率仍然较低,比如(检索某个值,需要从头节点开始遍历)
  1. 树存储方式:
特点
能提高数据存储,读取的效率, 比如利用 二叉排序树(Binary Sort Tree),既可以保证数据的检索速度,同时也可以保证数据的插入,删除,修改的速度。

树的一些基本术语

在这里插入图片描述

二叉树

    树有很多种,每个节点最多只能有两个子节点的一种形式称为二叉树,二叉树的子节点分为左节点和右节点。
在这里插入图片描述

满二叉树和完全二叉树

    满二叉树:如果该二叉树的所有叶子节点都在最后一层,并且结点总数= 2^n -1 , n为层数,则我们称为满二叉树。
在这里插入图片描述

    完全二叉树:如果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续,我们称为完全二叉树。
在这里插入图片描述
在这里插入图片描述

二叉树的遍历

    二叉树的遍历分为前序,中序和后序遍历三种,下面分别使用这三种遍历方式来对一下二叉树进行遍历:
在这里插入图片描述
    节点类(提供get和set方法方便获取和设置子节点):


class Node {
    private int no;
    private String name;
    private Node left;
    private Node right;

    public Node(int no, String name) {
        this.no = no;
        this.name = name;
    }

    public int getNo() {
        return no;
    }

    public void setNo(int no) {
        this.no = no;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public Node getLeft() {
        return left;
    }

    public void setLeft(Node left) {
        this.left = left;
    }

    public Node getRight() {
        return right;
    }

    public void setRight(Node right) {
        this.right = right;
    }

    @Override
    public String toString() {
        return "HeroNode{" +
                "no=" + no +
                ", name='" + name + '\'' +
                '}';
    }
}

    提供一个BinaryTree类来装Node,并用来指定root节点:


class BinaryTree {
    private Node root;

    public void setRoot(Node root) {
        this.root = root;
    }
}

    BinaryTreeDemo类用来造树并测试:


public class BinaryTreeDemo {
    public static void main(String[] args) {
        BinaryTree binaryTree = new BinaryTree();

		//	造节点
        Node root = new Node(1, "北京");
        Node node2 = new Node(2, "上海");
        Node node3 = new Node(3, "深圳");
        Node node4 = new Node(4, "广州");
        Node node5 = new Node(5, "珠海");
        Node node6 = new Node(6, "澳门");
		//	设置节点间的关系
        root.setLeft(node2);
        node2.setRight(node5);
        root.setRight(node3);
        node3.setRight(node4);
        node3.setLeft(node6);
		//	设置根节点
        binaryTree.setRoot(root);
    }
    

前序遍历

    先输出当前节点,再递归当前节点的左子树和右子树进行前序遍历(递归太多了有点绕,但是不难,建议搭配debug食用加深理解)。
在这里插入图片描述

代码实现

//	前序遍历
public void preOrder() {
		//	先输出当前节点
        System.out.println(this.toString());
        //	如果当前节点的左子树不为空
        if (this.left != null) {
        	//	递归遍历左子树
            this.left.preOrder();
        }
        //	如果当前节点的右子树不为空
        if (this.right != null) {
        //	递归遍历右子树
            this.right.preOrder();
        }
    }

中序遍历

    先递归当前节点的左子树进行前序遍历,接着输出当前节点,最后再递归当前节点的右子树进行前序遍历(就是调整了一下前序遍历的语句顺序而已)。

代码实现

public void infixOrder() {
        if (this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this.toString());
        if (this.right != null) {
            this.right.infixOrder();
        }
    }

后序遍历

    先递归当前节点的左子树进行前序遍历,接着递归当前节点的右子树进行前序遍历,最后输出当前节点(同样只是调整了一下语句顺序)。

代码实现

public void postOrder() {
        if (this.left != null) {
            this.left.postOrder();
        }
        if (this.right != null) {
            this.right.postOrder();
        }
        System.out.println(this.toString());
    }

结果

在这里插入图片描述

二叉树的查找

    二叉树的查找同样分为三种,分别为前序查找,中序查找和后序查找。

前序查找

思路

  1. 给方法传入一个待查找的编号 。
  2. 如果当前节点的编号是要查找的编号,返回当前节点。
  3. 如果不是,先新建一个节点resNode用于保存递归查找返回的节点,然后判断当前节点的左子节点是否为空,不为空则向左递归查找。
  4. 如果找到了就返回这个节点,没有找到那么resNode还是null,则进行下一步。
  5. 判断当前节点的右子节点是否为空,不为空则向右递归查找。
  6. 不管找没找到,都返回resNode,只需最后在外面判断返回值是否为空即可。

代码实现

public Node preOrderSearch(int no) {
        //  如果当前节点的编号是要查找的编号,返回当前节点
        if (this.no == no) {
            return this;
        }
        // 新建一个节点resNode用于保存递归查找返回的节点
        Node resNode = null;
        // 如果不是,就判断当前节点的左子节点是否为空,不为空则向左递归查找
        if (this.left != null) {
            resNode = this.left.preOrderSearch(no);
        }
        // 如果找到了就返回这个节点,没有找到那么resNode还是null,则进行下一步
        if (resNode != null) {
            return resNode;
        }
        //  判断当前节点的右子节点是否为空,不为空则向右递归查找
        if (this.right != null) {
            resNode = this.right.preOrderSearch(no);
        }
        // 不管找没找到,都返回resNode,只需最后在外面判断返回值是否为空即可
        return resNode;
    }

中序查找

思路

    思路与前序查找类似,就调整一下语句顺序。

代码实现

public Node infixOrderSearch(int no) {
        Node resNode = null;
        if (this.left != null) {
            resNode = this.left.infixOrderSearch(no);
        }
        if (resNode != null) {
            return resNode;
        }
        if (this.no == no) {
            return this;
        }
        if (this.right != null) {
            resNode = this.right.infixOrderSearch(no);
        }
        return resNode;
    }

后序查找

思路

    思路类似,就调整一下语句顺序。

代码实现

public Node postOrderSearch(int no) {
        Node resNode = null;
        if (this.left != null) {
            resNode = this.left.infixOrderSearch(no);
        }
        if (resNode != null) {
            return resNode;
        }
        if (this.right != null) {
            resNode = this.right.infixOrderSearch(no);
        }
        if (resNode != null) {
            return resNode;
        }
        if (this.no == no) {
            return this;
        }
        return resNode;
    }

结果测试

    在main方法中写:

System.out.println("前序遍历查找");
        Node heroNode = binaryTree.preOrderSearch(5);
        if (heroNode != null) {
            System.out.println("找到了:" + heroNode.toString());
        } else {
            System.out.println("没有找到该节点");
        }

    结果:
在这里插入图片描述

二叉树的删除

    目前阶段先规定:
        如果要删除的节点是叶子节点,就删除该节点。
        如果要删除的节点是非叶子节点,就删除该子树。

思路

  1. 因为二叉树是单向的,所以我们该判断当前节点的子节点是否需要删除,而不是判断当前节点是否需要删除。
  2. 先判断是不是空树或者是不是只有一个根节点,只有一个根节点的话就等价于把二叉树置为空。
  3. 判断当前节点的左子节点是否不为空且是要删除的节点,是就删除(this.left == null),并且返回(结束递归),如果不是则进行下一步。
  4. 判断当前节点的右子节点是否不为空且是要删除的节点,是就删除(this.right== null),并且返回(结束递归),如果不是则进行下一步。
  5. 如果第3和4步骤都没有删除节点,则需要向当前节点的左子树进行递归删除。
  6. 如果第5步骤没有删除节点,则需要向当前节点的右子树进行递归删除。

代码实现

 public void OrderDelete(int no) {
        if (this.left != null && this.left.no == no) {
            this.left = null;
            return;
        }
        if (this.right != null && this.right.no == no) {
            this.right = null;
            return;
        }
        if (this.left != null){
            this.left.OrderDelete(no);
        }
        if (this.right!= null){
            this.right.OrderDelete(no);
        }
    }

结果测试

    在main方法中写:


		System.out.println("删除前:");
        binaryTree.preOrder();
        System.out.println("删除后:");
        //	删除2号节点
        binaryTree.OrderDelete(2);
        binaryTree.preOrder();

    结果:
在这里插入图片描述
    可以看到2号节点上海及其5号子节点珠海都被删除,符合预期。

完整代码

public class BinaryTreeDemo {
    public static void main(String[] args) {
        BinaryTree binaryTree = new BinaryTree();

        Node root = new Node(1, "北京");
        Node node2 = new Node(2, "上海");
        Node node3 = new Node(3, "深圳");
        Node node4 = new Node(4, "广州");
        Node node5 = new Node(5, "珠海");
        Node node6 = new Node(6, "澳门");

        root.setLeft(node2);
        node2.setRight(node5);
        root.setRight(node3);
        node3.setRight(node4);
        node3.setLeft(node6);
        
        //  设置根节点
        binaryTree.setRoot(root);

        //  删除测试
        System.out.println("删除前:");
        binaryTree.preOrder();
        System.out.println("删除后:");
        binaryTree.OrderDelete(2);
        binaryTree.preOrder();

        //  查找测试
        System.out.println("前序遍历查找");
        Node heroNode = binaryTree.preOrderSearch(5);
        if (heroNode != null) {
            System.out.println("找到了:" + heroNode.toString());
        } else {
            System.out.println("没有找到该节点");
        }
        binaryTree.preOrder();
        binaryTree.OrderDelete(3);
        System.out.println("__________________");
        binaryTree.preOrder();

        // 遍历测试
        System.out.println("前序遍历:"); //1,2,5,3,6,4
        binaryTree.preOrder();

        System.out.println("中序遍历:"); //2,5,1,6,3,4
        binaryTree.infixOrder();

        System.out.println("后序遍历:"); // 5,2,6,4,3,1
        binaryTree.postOrder();
    }
}

class BinaryTree {
    private Node root;

    public void setRoot(Node root) {
        this.root = root;
    }

    public void preOrder() {
        if (this.root != null) {
            this.root.preOrder();
        } else {
            System.out.println("二叉树为空");
        }
    }

    public void infixOrder() {
        if (this.root != null) {
            this.root.infixOrder();
        } else {
            System.out.println("二叉树为空");
        }
    }

    public void postOrder() {
        if (this.root != null) {
            this.root.postOrder();
        } else {
            System.out.println("二叉树为空");
        }
    }

    public Node preOrderSearch(int no) {
        if (root != null) {
            return root.preOrderSearch(no);
        } else {
            return null;
        }
    }

    public Node infixOrderSearch(int no) {
        if (root != null) {
            return root.infixOrderSearch(no);
        } else {
            return null;
        }
    }

    public Node postOrderSearch(int no) {
        if (root != null) {
            return root.postOrderSearch(no);
        } else {
            return null;
        }
    }

    public void OrderDelete(int no) {
        if (root != null) {
            if (root.getNo() == no) {
                root = null;
            } else {
                root.OrderDelete(no);
            }
        } else {
            System.out.println("这是一颗空树");
        }
    }
}

class Node {
    private int no;
    private String name;
    private Node left;
    private Node right;

    public Node(int no, String name) {
        this.no = no;
        this.name = name;
    }

    public int getNo() {
        return no;
    }

    public void setNo(int no) {
        this.no = no;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public Node getLeft() {
        return left;
    }

    public void setLeft(Node left) {
        this.left = left;
    }

    public Node getRight() {
        return right;
    }

    public void setRight(Node right) {
        this.right = right;
    }

    @Override
    public String toString() {
        return "HeroNode{" +
                "no=" + no +
                ", name='" + name + '\'' +
                '}';
    }

    public void OrderDelete(int no) {
        if (this.left != null && this.left.no == no) {
            this.left = null;
            return;
        }
        if (this.right != null && this.right.no == no) {
            this.right = null;
            return;
        }
        if (this.left != null) {
            this.left.OrderDelete(no);
        }
        if (this.right != null) {
            this.right.OrderDelete(no);
        }
    }

    public Node preOrderSearch(int no) {
        //  如果当前节点的编号是要查找的编号,返回当前节点
        if (this.no == no) {
            return this;
        }
        // 新建一个节点resNode用于保存递归查找返回的节点
        Node resNode = null;
        // 如果不是,就判断当前节点的左子节点是否为空,不为空则向左递归查找
        if (this.left != null) {
            resNode = this.left.preOrderSearch(no);
        }
        // 如果找到了就返回这个节点,没有找到那么resNode还是null,则进行下一步
        if (resNode != null) {
            return resNode;
        }
        //  判断当前节点的右子节点是否为空,不为空则向右递归查找
        if (this.right != null) {
            resNode = this.right.preOrderSearch(no);
        }
        // 不管找没找到,都返回resNode,只需最后在外面判断返回值是否为空即可
        return resNode;
    }

    public Node infixOrderSearch(int no) {
        Node resNode = null;
        if (this.left != null) {
            resNode = this.left.infixOrderSearch(no);
        }
        if (resNode != null) {
            return resNode;
        }
        if (this.no == no) {
            return this;
        }
        if (this.right != null) {
            resNode = this.right.infixOrderSearch(no);
        }
        return resNode;

    }

    public Node postOrderSearch(int no) {
        Node resNode = null;
        if (this.left != null) {
            resNode = this.left.infixOrderSearch(no);
        }
        if (resNode != null) {
            return resNode;
        }
        if (this.right != null) {
            resNode = this.right.infixOrderSearch(no);
        }
        if (resNode != null) {
            return resNode;
        }
        if (this.no == no) {
            return this;
        }
        return resNode;

    }

    public void preOrder() {
        System.out.println(this.toString());
        if (this.left != null) {
            this.left.preOrder();
        }
        if (this.right != null) {
            this.right.preOrder();
        }
    }

    public void infixOrder() {
        if (this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this.toString());
        if (this.right != null) {
            this.right.infixOrder();
        }
    }

    public void postOrder() {
        if (this.left != null) {
            this.left.postOrder();
        }
        if (this.right != null) {
            this.right.postOrder();
        }
        System.out.println(this.toString());
    }
}
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页