leetcode热题100思路--滑动窗口

3. 无重复字符的最长子串

中等

9.6K

相关企业

给定一个字符串 s ,请你找出其中不含有重复字符的 最长子串 的长度。

示例 1:

输入: s = "abcabcbb"
输出: 3 
解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。

示例 2:

输入: s = "bbbbb"
输出: 1
解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。

示例 3:

输入: s = "pwwkew"
输出: 3
解释: 因为无重复字符的最长子串是 "wke",所以其长度为 3。
     请注意,你的答案必须是 子串 的长度,"pwke" 是一个子序列,不是子串。

1.总体思路:我觉得这题有点像指针。首先使用set()来记录可能得最长子串,这样可以利用里面的remove操作,如果遍历到的元素a已经出现在子串里了,那么使用指针来去除掉set()里面与a相同元素之前的值

2.详细思路:

(1)初始化最大长度maxlen=0,当前长度curlen=0,记录最长子串lookup=set(),指针left=0

(3)循环遍历字符串,使用while循环来判断当前元素是否出现在lookup中,如果出现

                  lookup.remove(s[left])

                  left+=1

                  curlen-=1

(4)把当前元素添加到lookup中

(5)curlen+=1

(6)比较maxlen和curlen的大小,更新maxlen的值      

438. 找到字符串中所有字母异位词

中等

1.3K

相关企业

给定两个字符串 s 和 p,找到 s 中所有 p 的 异位词 的子串,返回这些子串的起始索引。不考虑答案输出的顺序。

异位词 指由相同字母重排列形成的字符串(包括相同的字符串)。

示例 1:

输入: s = "cbaebabacd", p = "abc"
输出: [0,6]
解释:
起始索引等于 0 的子串是 "cba", 它是 "abc" 的异位词。
起始索引等于 6 的子串是 "bac", 它是 "abc" 的异位词。

 示例 2:

输入: s = "abab", p = "ab"
输出: [0,1,2]
解释:
起始索引等于 0 的子串是 "ab", 它是 "ab" 的异位词。
起始索引等于 1 的子串是 "ba", 它是 "ab" 的异位词。
起始索引等于 2 的子串是 "ab", 它是 "ab" 的异位词。

1.总体思路:

(1)如何判断s和p在窗口中的词具有相同的字母:使用词频来进行判断,首先初始化一个大小为len(p)的窗口,先计算出s和p在这个窗口中的词频,如果词频相等,也就是说字母相同(这个问题没有强调窗口中的字母必须是不一样的,所以可以使用词频来判断s和p中是否有异位词)。

(2)如何进行窗口滑动:由于第一个位置已经进行了判断,所以在循环时,我们从第二个位置开始,判断s中i+1个位置到i+len(p)个位置的字符串是否与p是异位词。也就是说在循环时,第i个位置的词频-1,而第i+len(p)位置的词频+1,这样就实现了窗口的滑动。

2.详细思路:

(1)初始化统计词频的数组scount和pcount为26位数组

(2)处理特解,当s的长度小于p的长度的时候返回为空,当s==p的时候返回为[0]

(3)初始化窗口: 窗口在[0:len(p)-1]

for i in range(len(p)):
      scount[ord(s[i])-ord('a')]+=1
      pcount[ord(p[i])-ord('a')]+=1
if scount==pcount:
      ans.append(0)

(4)滑动窗口:当i=0时,第0个位置到len(p)-1已经在初始化窗口时比较过了,所以第0个位置的字母对应的频率需要-1,第len(p)位置的字母对应的词频+1,这时候相当于窗口划到[1:len(p)]。同理可得到i=2,3,4...的算法

for i in range(len(s)-len(p)):
      scount[ord(s[i])-ord('a')]-=1
      scount[ord(s[i+len(p)])-ord('a')]+=1
      if scount==pcount:
          ans.append(i+1)

239. 滑动窗口最大值

提示

困难

2.5K

相关企业

给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。

返回 滑动窗口中的最大值 

示例 1:

输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置                最大值
---------------               -----
[1  3  -1] -3  5  3  6  7       3
 1 [3  -1  -3] 5  3  6  7       3
 1  3 [-1  -3  5] 3  6  7       5
 1  3  -1 [-3  5  3] 6  7       5
 1  3  -1  -3 [5  3  6] 7       6
 1  3  -1  -3  5 [3  6  7]      7

示例 2:

输入:nums = [1], k = 1
输出:[1]

1.总体思路:堆+滑动窗口

(1)如何找到滑动窗口中的最大值:使用堆来对滑动窗口进行排序,堆顶元素就是滑动窗口中的最大值。

(2)如何进行滑动:将每个元素的值与及其index一起保存到堆中,循环遍历时i从k到len(nums),循环判断堆顶元素的index是否<=i-k(因为在不断地往堆里面加值,如果只删除最大的值,可能会有次大的值已经不在窗口里了,所以需要循环删除),如果小于等于,则说明堆顶元素已经不是当前滑动窗口中的最大值,那么就将堆顶元素pop掉,再将第i个值加入到堆中,从而实现滑动窗口的移动。

2.详细思路

(1)初始化窗口:将前k个元素加到列表中,再使用heapq.heapify()操作将列表调整为小根堆。由于python默认建立的是小根堆,所以需要将nums变为相应的负数与其index一起存到列表中,这样子q[0][0]就是前k个元素中的最大值,而q[0][1]就是最大值在数组中的index。

q=[(-nums[i],i) for i in range(k)]
heapq.heapify(q)
ans=[-q[0][0]]

(2)滑动窗口:使用heapq.heappush把(-num[i],i)按堆的形式存放到列表中。由于我们需要判断当前堆顶值的index是否还在滑动窗口中,所以i应该从k到len(nums)进行遍历,这样子就可以根据index是否<=i-k来判断对堆顶值是否是滑动窗口的最大值。

for i in range(k,len(nums)):
    heapq.heappush(q,(-nums[i],i))
    while q[0][1]<=i-k:
          heapq.heappop(q)#注意这里的pop操作,是pop(q)而不是pop(q[0][0])
    ans.append(-q[0][0])
return ans

76. 最小覆盖子串

提示

困难

2.7K

相关企业

给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串,则返回空字符串 "" 。

注意:

  • 对于 t 中重复字符,我们寻找的子字符串中该字符数量必须不少于 t 中该字符数量。
  • 如果 s 中存在这样的子串,我们保证它是唯一的答案。

示例 1:

输入:s = "ADOBECODEBANC", t = "ABC"
输出:"BANC"
解释:最小覆盖子串 "BANC" 包含来自字符串 t 的 'A'、'B' 和 'C'。

示例 2:

输入:s = "a", t = "a"
输出:"a"
解释:整个字符串 s 是最小覆盖子串。

示例 3:

输入: s = "a", t = "aa"
输出: ""
解释: t 中两个字符 'a' 均应包含在 s 的子串中,
因此没有符合条件的子字符串,返回空字符串。

1.总体思想:可变滑动窗口

(1)如何找到s中存在t:使用一个哈希表need保存t中对应字母出现的频率,再使用一个变量neednum保存t中有几种字母。

(2)如何进行滑动:设定一个左指针i和一个右指针j,j先向右扩大窗口,直到包含整个t中的元素(neednum==0),再将i向右移动,直到滑动窗口中的某种元素出现的频次小于t中相应字母出现的频次。

(3)在循环遍历时,need[i]>0表示滑动窗口中来需要元素i的个数。need[i]==0,表示滑动窗口已经包括足够的元素i,need[i]<0表示多出的元素i的个数

2.详细思路:

(1)判断特解

 if len(s)<len(t):
       return ""
 if s==t:
       return s

(2)初始化need,并统计种类数neednum

i=0
need={}
neednum=0
for i in range(len(t)):
    if t[i] not in need:
        need[t[i]]=0
        neednum+=1
    need[t[i]]+=1

(3)使用j遍历s,将窗口扩大。如果碰到的元素s[j]在need中,那么need[s[j]]-=1,当need[s[j]]==0时(滑动窗口中已经包含了与t中相同次数的种类为s[j]的字母),才将neednum-=1。当滑动窗口中包含整个t时,也就是neednum=0时(while neednum==0),对i进行移动,使窗口缩小。碰到元素s[i]在t中时,need[s[i]]+=1,直到need[s[i]]>0时(滑动窗口此时种类为s[i]的字母的次数小于t),此时需要neenum+=1。

minlen=len(s)
i=0
ans=""
for j in range(len(s)):  
     if s[j] in t:          
         need[s[j]]-=1
         if need[s[j]]==0:
             neednum-=1
     while neednum==0:
         if j-i+1<=minlen:
              minlen=j-i+1
              ans=s[i:j+1]
         if s[i] in t:
              need[s[i]]+=1
              if need[s[i]]>0:
                  neednum+=1
         i+=1
return ans

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值