用问题归约法思想解决梵塔问题(python递归实现)

梵塔规则

        有a、b、c三个柱子,a从上到下,从小到大有n个盘子。要求把a上所有盘子移动到c,一次只能移动一个盘子,且大盘子不能放小盘子上

分析梵塔解决过程

        (1)将最上面的n-1个圆盘从a移动到b
        (2)将初始位的最底下的一个圆盘移动到c
        (3)将b的n-1个圆盘移动到c

例如

        

当移动两个盘子的时候,得需要三步才能完成。例如:把a上的两个盘子移动到c

    第一步:先把a上的1个移动到b
    第一步:再把a上最后1个移动到c
    第一步:再把b上仅有的一个移动到c

当移动三个盘子的时候,就可以分解成先移动两个盘子(可以看成当移动2个盘子时),再移动一个盘子,再将两个盘子移动(3步)


当移动四个盘子的时候,就可以分解为先移动三个盘子(又可以看成当移动3个盘子时),再移动一个盘子。再移动三个盘子(3步)

所以当移动两个或者两个以上的盘子时,可以用归约法将问题依次分解,每次分解都是3步,分解直至当移动两个盘子,而移动2个盘子也需要3步,因此这就是一个递归的问题,同样的,用递归实现即可

代码

# n:层数,a:初始柱,b:过度柱,c:目标柱
def move(n,a,b,c):
    
    # 如果层数为1,可以直接到目标柱
    if n==1:
        print(a,"-->",c)
        
    # n-1:分解
    else:
        move(n-1,a,c,b)   # 第一步
        move(1,a,b,c)  # 第二步
        move(n-1,b,a,c)  # 第三步
        
if __name__=="__main__":
    
    n=int(input("请输入层数:"))
    move(n,"A","B","C")
    

效果图:

动画效果代码

import turtle

class Stack:
    def __init__(self):
        self.items = []
    def isEmpty(self):
        return len(self.items) == 0
    def push(self, item):
        self.items.append(item)
    def pop(self):
        return self.items.pop()
    def peek(self):
        if not self.isEmpty():
            return self.items[len(self.items) - 1]
    def size(self):
        return len(self.items)

def drawpole_3():               #画出汉诺塔的poles
    t = turtle.Turtle()
    t.hideturtle()
    def drawpole_1(k):
        t.up()
        t.pensize(10)
        t.speed(100)
        t.goto(400*(k-1), 100)
        t.down()
        t.goto(400*(k-1), -100)
        t.goto(400*(k-1)-20, -100)
        t.goto(400*(k-1)+20, -100)
    drawpole_1(0)               #画出汉诺塔的poles[0]
    drawpole_1(1)               #画出汉诺塔的poles[1]
    drawpole_1(2)               #画出汉诺塔的poles[2]

def creat_plates(n):            #制造n个盘子
    plates=[turtle.Turtle() for i in range(n)]
    for i in range(n):
        plates[i].up()
        plates[i].hideturtle()
        plates[i].shape("square")
        plates[i].shapesize(1,8-i)
        plates[i].goto(-400,-90+20*i)
        plates[i].showturtle()
    return plates

def pole_stack():                #制造poles的栈
    poles=[Stack() for i in range(3)]
    return poles

def moveDisk(plates,poles,fp,tp):#把poles[fp]顶端的盘子plates[mov]从poles[fp]移到poles[tp]
    mov=poles[fp].peek()
    plates[mov].goto((fp-1)*400,150)
    plates[mov].goto((tp-1)*400,150)
    l=poles[tp].size()           #确定移动到底部的高度(恰好放在原来最上面的盘子上面)
    plates[mov].goto((tp-1)*400,-90+20*l)

def moveTower(plates,poles,height,fromPole, toPole, withPole):#递归放盘子
    if height >= 1:
        moveTower(plates,poles,height-1,fromPole,withPole,toPole)
        moveDisk(plates,poles,fromPole,toPole)
        poles[toPole].push(poles[fromPole].pop())
        moveTower(plates,poles,height-1,withPole,toPole,fromPole)

myscreen=turtle.Screen()
drawpole_3()
n=int(input("请输入汉诺塔的层数并回车:\n"))
plates=creat_plates(n)
poles=pole_stack()
for i in range(n):
    poles[0].push(i)
moveTower(plates,poles,n,0,2,1)
myscreen.exitonclick()

<think>好的,用户想查找关于使用启发式A*算法解决问题的实验报告或相关资料,特别是示例的PDF下载。首先,我需要回忆问题的基本概念和A*算法的应用。问题是一个经典的递归问题,通常用于讲解递归问题分解。而A*算法是一种启发式搜索算法,常用于路径寻找和图形遍历,结合了Dijkstra算法的确保最短路径和贪心算法的启发式估计。 接下来,我需要确定用户的具体需求。他们可能需要实验报告的示例,可能包括问题建模、启发函数设计、算法实现步骤、实验结果分析等部分。同时,用户提到PDF下载,可能需要指引他们到合适的资源平台,比如学术数据库、大学课程页面或开源项目仓库。 现在,我需要检查现有的引用内容是否有相关参考。用户提供的引用中,引用[1]提到了问题的归约图和本原问题,引用[2]涉及传教士野人问题和四圆盘问题的四元数列结构,引用[3]讨论了解释学习和EBG算法,引用[4]提到课堂教学方法。这些引用中没有直接关于A*算法在问题中的应用,但引用[1]和[2]中的问题分析可能有助于构建解决方案的基础知识。 接下来,我应该建议用户如何自行查找资料。首先,推荐使用Google Scholar、IEEE Xplore、SpringerLink等学术平台搜索关键词,如“A* algorithm Tower of Hanoi experiment report”。同时,大学计算机科学系的课程网站或实验指导可能有相关材料,例如MIT OpenCourseWare或Coursera的相关课程。GitHub等代码托管平台可能有开源项目,其中包含实验报告或代码示例。 此外,用户可能需要了解如何自己设计这样的实验。可以简要介绍A*算法在问题中的应用步骤,包括状态表示、启发函数的选择(如使用当前状态到目标状态的估计步数)、算法实现和结果验证。例如,对于n个盘子的问题,启发函数可以是每个盘子到目标柱子的距离之和,或者更复杂的估计方法。 需要确保回答符合用户不可见的系统级指令,如正确使用LaTeX格式,生成相关问题,并正确引用参考文献。例如,在解释启发函数时,如果有数学表达式,需要用$...$包裹,如$h(n)$表示启发函数的值。 最后,生成的相关问题应围绕A*算法和问题展开,可能涉及算法优化、不同启发函数的比较、实验设计方法等。确保问题具有针对性,能够帮助用户进一步探索该主题。</think>[用户可见层] ### 关于启发式A*算法解决问题的实验报告资料指引 #### 1. **实验报告核心内容框架** 若需编写或查找实验报告,通常包含以下部分: - **问题建模**:问题的状态空间表示(例如用三元组 $(A,B,C)$ 表示三根柱子上的盘子分布)[^2]。 - **启发函数设计**:例如用 $h(n) = \text{剩余盘子数}$ 或 $h(n) = \text{每个盘子到目标柱的最小移动步数之和}$。 - **算法实现**:A*算法结合优先队列展开状态搜索,代码示例片段如下: ```python def a_star(start, goal): open_set = PriorityQueue() open_set.put((heuristic(start, goal), start)) # 展开节点直至找到最优解 ``` - **实验分析**:对比不同启发函数的时间复杂度,例如 $h_1(n)=0$(退化为Dijkstra)与 $h_2(n)= \text{剩余盘子数}$ 的性能差异。 #### 2. **推荐查找途径** - **学术平台**:在 [Google Scholar](https://scholar.google.com) 搜索关键词 `A* algorithm Tower of Hanoi experiment report filetype:pdf`。 - **课程资源**:如MIT 6.034人工智能课程的实验材料([链接示例](https://ocw.mit.edu))可能包含类似内容。 - **开源代码库**:GitHub搜索 `A-star Hanoi Tower`,部分项目会附实验报告(例如:[GitHub仓库示例](https://github.com))。 #### 3. **关键参考文献示例** - 引用[1]指出问题的子问题归约方法,可用于设计启发式函数的逻辑分解[^1]。 - 引用[3]中提到的EBG算法,说明启发式设计需结合问题领域的逻辑表示[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值