BASE理论
BASE是Basically Available(基本可用)、Soft-state(软状态)和Eventually Consistent(最终一致性)三个短语的缩写。BASE理论是对CAP中一致性C和可用性A权衡的结果,基于CAP定理逐步演化而来的,它大大降低了我们对系统的要求。
也就是牺牲数据的一致性来满足系统的高可用性,系统中一部分数据不可用或者不一致时,仍需要保持系统整体“主要可用”。
因此AP方案只是在系统发生分区的时候放弃一致性,而不是永远放弃一致性。在分区故障恢复后,系统应该达到最终一致性。这就是BASE理论延伸的地方。
1、基本可用
基本可用是指分布式系统在出现不可预知故障的时候,损失部分可用性。但是,这绝不等价于系统不可用。
什么叫允许损失部分可用性呢?
响应时间上的损失:郑航情况下,处理用户请求需要0.5s返回结果,但由于系统出现故障,处理用户请求的时间变为3s。
系统功能上的损失:正常情况下,用户可以使用系统全部功能,但是由于系统访问量突然剧增,系统的部分非核心功能无法使用。
2、软状态
软状态指允许系统中的数据存在中间状态,并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本之间数据同步的过程存在延时。
3、最终一致性
最终一致性强调的是系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一直的状态。因此,最终一致性的本质是需要系统保证最终数据能够到达一致,而不需要实时保证系统数据的强一致性。
分布式一致性分为三个级别
1、强一致性:系统写入了什么,读出来就是什么
2、弱一致性:不一定可以读取到最新写入的值,也不保证多长时间能够读到数据时最新的,只是会尽量保证某个时刻数据一致的状态。
3、最终一致性:弱一致性的升级版,系统会保证在一定时间内达到数据一致的状态。
目前最流行的是最终一致性级别。如果银行场景需要最终一致性。
那实现最终一致性的具体方式是什么?
1、读时修复:在读取数据时,检测数据的不一致,进行修复。
2、写时修复:在写入数据时,检测数据的不一致,进行修复
3、异步修复:这个最常用的方式,通过定时对账检测副本数据的一致性,并修复。
推荐写时修复,这种方式对性能消耗比较低。
总结:
ACID是数据库事务完整性的理论,CAP是分布式系统设计理论,BASE是CAP理论中延伸。