- 博客(126)
- 收藏
- 关注
原创 【文献笔记】arXiv 2018 | PointSIFT
(Tensorflow版本)本文简单概括一下PointSIFT的主要工作,不会深入讲解各个部分,因为作者给的源码和文中的描述好像是对应不上的,而且只有Tensorflow版本(我只会Pytorch啊)文章的主要亮点是邻点的搜索方法,这个倒是让我眼前一亮,缺陷是它的计算复杂度会很高。
2025-10-24 18:01:52
44
原创 【文献笔记】ICLR 2018 | Graph Attention Networks
(pytorch版本)通过阅读和石师兄的毕业论文才了解到图注意力机制网络这篇论文,感觉挺神奇的粗读了一下这篇论文的核心贡献,Graph Attention Layer 用点云的角度去理解是非常容易的,在点云邻域的适配度非常高。
2025-10-23 16:12:45
67
原创 【文献笔记】CVPR 2019 | GACNet-点云上的图注意力机制网络
本文介绍了一种在点云上的图注意力机制网络GACNet,其主要贡献点在于,通过建立每个点与周围点的图结构,并通过引入图注意力机制计算中心点与每一个邻接点的边缘权重,从而使得网络能在分割的边缘部分取得更好的效果左:标准卷积 右:GAC如上图,点1与5个点相邻接,因此点1上的特征由5个邻接点的特征与它自己本身的特征加权得到左图是标准卷积,标准卷积的权重只由邻点的空间位置决定,这会使得点1处学习的特征无法区分和表征其相邻点到底是table还是chair右图是本文的GAC模块。
2025-10-21 21:18:02
74
原创 【文献笔记】CVPR 2020 | RandLA-Net
(Tensorflow版)(Pytorch版,选择gather分支)下采样方法使用随机采样。
2025-10-16 10:08:38
59
原创 【文献笔记】AAAI 2018 | DGCNN
(原作者,Pytorch版只实现了分类模型)(更推荐,其他人实现的Pytorch版,包含分类、部件分割、语义分割)DGCNN是点云邻域比较经典的论文,引用量高达8000+。这篇论文的核心方法本身是不难的,但论文写的有点晦涩,刚开始看可能会觉得看不懂,建议粗读一遍论文然后看一遍源码,源码的实现很简洁清晰,这样理解起来会比较容易一点。
2025-10-05 23:13:32
106
原创 【文献笔记】NeurIPS 2022 | PointNeXt
PointNet++是点云最具影响力的模型之一,其地位相当于2D中的ResNet。尽管PointNet++的精度已被PointMLP和等最近的网络在很大程度上超越,但作者作为PointNet++的潜力未被完全挖掘(确实是这样,PointNet++的模型结构简单,但又非常work)作者通过改进训练策略,即数据增强和优化技术,显著提高了PointNet++的性能。比如说,在不改变架构的情况下,PointNet++在对象分类上的整体准确率(OA)可以从原始的77.9%提高到。
2025-10-04 16:43:57
89
原创 【文献笔记】remote sensing 2024 | PointStack
现有的点云特征学习模型的Encoder几乎都是不断作下采样邻居分组邻域特征学习特征聚合(通常是最大池化)。但是这种处理过程会出现两个问题:(1)不断下采样导致损失大量细粒度信息(2)最大池化完全抛弃了非最大值点的特征由于 (1)(2) 导致现有模型无法有效的表征点云的全局语义特征和局部上下文信息。而PointMLP为了挽救这种问题,在源码中作了以下实现(但在PointMLP的原始论文中并未提及,这不是偷偷加trick吗):PointMLP将Encoder所有Stage。
2025-10-01 18:26:56
78
原创 关于在点云中应用注意力机制
大多数点云分割模型的Encoder可以概括为下采样分组邻居局部特征提取特征聚合(最大池化、平均池化、求和等),而很多的模型会在局部特征提取模块中使用注意力机制,例如APES(Attention-Based Point Cloud Edge Sampling) 等等本文将用点云数据来解释注意力机制,讲解注意力机制的大致流程①置换不变性:注意力权重是基于点积计算的,与点的输入顺序无关,完美契合点云的无序性②局部上下文感知:每个点不再孤立,其新特征融入了邻域内所有点的信息③。
2025-09-30 10:12:31
1043
原创 【文献笔记】CVPR 2023|Attention-Based Point Cloud Edge Sampling
优点能够有效采出点云数据的边缘点分类任务性能优越不足没有设计出一个更好的上采样方法,导致分割任务的性能略低只考虑了边缘特征,没有利用其他几何特征。
2025-09-24 16:03:26
192
原创 【文献笔记】CVPR 2022 | EQ-Net
这篇文章提出了一个新的点云模型的范式,之前的点云模式大多都是。但我整篇文章读下来我感觉与没有那么大的区别,而且EQ-Paradigm 参数量暴涨,训练起来非常占GPU显存。还有就是官方给的代码很难看懂,好像并没有整合出一个完整的模型代码,所以不建议复现这篇论文。
2025-09-24 08:30:33
58
原创 【文献笔记】ICCV 2021 | Point Transformer
作者提到,特别适合点云处理,因为自注意力机制是的核心,本质上就是一个集合算子:它对输入元素具有顺序不变性和数量不变性3D点云是无序的,即使改变点云txt文件中的点顺序也不会有任何影响。自注意力机制天然具有排列不变性,因为它通过对所有"点对"的关系进行建模来处理输入,而不依赖于任何特定的输入顺序点云数据通常覆盖了3D空间中的对象或场景,理解这些数据需要捕捉点与点之间复杂的空间关系。自注意力机制能够有效的捕捉这些关系,因为它为每个"点对"赋予一个。
2025-09-18 17:06:51
850
原创 【文献笔记】CVPR 2019 | RS-CNN
(本文的很多内容基本转载此博客)这篇文章的核心之处是使用方式提取邻点的特征,加强模型对于局部邻域特征的提取能力,和PointWeb的核心思想比较类似,当然设计强大的局部特征提取器已经是前几年点云的比较热门的研究方向了,现在点云领域的热门研究方向很多都是少样本任务嵌入语言大模型这些方面。
2025-09-16 09:47:36
896
原创 【文献笔记】CVPR 2019 | PointWeb
点云的输入尺寸为通过FPS作下采样,减少点的数量,以提高计算效率。输出尺寸为 是采样后点的数量为每个采样点找到离其最近的K个邻居,形成局部邻域,用于后续的特征处理。输出尺寸为PointWeb的核心模块,通过连接局部邻域内的所有点,进行上下文特征的交换与调整,增强局部特征的表达能力。输出为,未改变任何维度对每个点的特征用共享的多层感知器处理,用于进一步提取特征,输出为分别在每个局部区域内进行最大池化操作,将局部区域内的所有特征压缩成一"条"向量,输出为。
2025-09-13 16:50:54
1091
原创 【文献笔记】ICLR 2022 | PointMLP
PointNet++是点云分析的pipeline,自从 PointNet++ 之后,大家挤破头的在局部特征提取上做文章。这出现了一种现象:局部特征提取器越来越复杂,但性能越来越跨,且精度只是小幅度提升对局部几何特征提取的研究工作将近饱和,即目前的提取器提取特征的能力已经非常强了当前的(生产应用)中,更倾向于使用PointNet++等,因为它模型结构简洁轻量,很少使用复杂的提取器且作者认为点云的深度学习模型活在图像的阴影下。意思是只会搬隔壁2D图像的新方法,如。
2025-09-10 17:29:52
727
原创 最小二乘法拟合椭圆
对于每个数据点,预测值为,真实值,则误差为:最小化所有数据点的误差平方和:最终目标就是找到使总误差S最小的,这可以通过S分别对求偏导,并令偏导数 = 0来实现。
2025-07-28 12:07:13
736
原创 Open3D 点云DBSCAN密度聚类
聚类(Clustering)是按照某个特定标准(如距离)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,而不在同一个簇中的数据对象的差异性也尽可能的大。简单来说聚类后同一类的数据尽可能聚集到一起,不同类数据尽可能分离。
2025-07-14 18:49:02
998
原创 计算两个点的欧式距离
欧式距离(Euclidean Distance)是一种在欧几里得空间中度量两个点之间距离的常用方法,其公式根据空间维度的不同而不同。
2025-07-11 15:25:56
344
原创 Open3D 最远点采样FPS
FPS 是一种下采样算法,每次采样的时候都选择离之前已经采样得到的个点距离最远的点。FPS能够较好的保证采样后的点具有较好的覆盖率。因此在分割领域被广泛的使用但是FPS的计算复杂度与输入点云的点数呈平方相关,所以FPS并不适用用来处理大规模的点云。举例来说,如果输入一个具有百万个点的大场景点云时,使用FPS将其采样到原始规模的10%就需要200秒!
2025-07-11 10:50:07
1133
原创 【JavaWeb】Servlet(一)——原理篇
前文说到,"Servlet 技术的核心是 Servlet 接口,它是所有 Servlet 类必须直接或者间接实现的一个接口"让我们来看一看Servlet接口中定义了哪些方法。
2025-06-24 16:37:55
1434
原创 【JavaWeb】JavaWeb乱码问题
本文所有的案例使用的Tomcat版本为:9.0.105IDEA遵循以下配置:启动参数、IDEA 控制台编码、文件编码都设置为 UTF-8。
2025-06-24 11:31:27
1374
原创 Servlet容器(Web容器)简介
(本文的内容基本转载自该文章,写的很好,非常推荐大家看一下)JavaWeb项目中,我们编写的Servlet类没有main()函数,不能独立运行,那我们如何启动一个Servlet?如何结束一个Servlet?如何寻找一个Servlet?这一切都受控于另一个Java应用,这个应用我们就称之为Servlet容器,也称为Web容器。Servlet容器帮助我们管理着Servlet,使我们只需要将重心专注于业务逻辑在介绍Servlet。
2025-06-20 20:51:04
1075
原创 详解Java的启动参数-Dfile.encoding、System.getProperty(“file.encoding“)、该参数影响哪些行为
1. 介绍关于Java的启动参数的作用我发现很多博客都没有讲清楚,我先做简单介绍和设置该参数的方法,后续会讲解该参数到底有什么作用该参数与相对应,如下所示①IDEA创建普通的非JavaWeb项目,未设置启动参数时,默认为UTF-8②IDEA创建JavaWeb项目,未设置启动参数时,默认为GBK;如果想修改的值应该怎么办呢?通过设置启动参数-即可。
2025-06-14 15:57:05
1122
原创 【JavaWeb】速通HTTP协议
1. 简述HTTP全称:超文本传输协议。是一个应用层协议,由于其简捷、快速的方式,适用于分布式超媒体信息系统HTTP规定了客户端与服务器之间进行数据传输的规则。客户端与服务端通信时传输的内容称之为报文。而HTTP就规定了客户端发送给服务器的报文格式,也规定了服务器发送给客户端的报文格式实际上要学习的就是这两种报文:①客户端发送给服务器的称为"请求报文②服务器发送给客户端的称为"响应报文"正式由于HTTP。
2025-06-06 10:37:41
780
原创 CloudCompare——计算点云表面曲率
表面曲率是点云数据表面的特征值来描述点云表面变化程度的一个概念,与数学意义上的曲率不同。我们不需要太纠结数学意义上的曲率,只需要关注表面曲率即可。颜色的深浅代表了表面曲率值的大小,可以在属性框一直往下拉,找到。点云的表面曲率计算过程和。Open3D 点云的表面曲率-CSDN博客。"工具类--->其他--->计算几何特征"① 框选点云,然后点击左上角的。计算点云表面曲率好像不能限制。④ 将计算后的点云保存成。② 弹出一个窗口,选择。,然后点击下方的🆗键。
2025-06-05 11:15:58
377
原创 Open3D 点云的表面曲率
表面曲率是点云数据表面的特征值来描述点云表面变化程度的一个概念,与数学意义上的曲率不同。我们不需要太纠结数学意义上的曲率,只需要关注表面曲率即可。
2025-06-05 10:07:00
998
原创 【Java Web】速通Tomcat
🆗,可以看到,该项目部署成功(红字日志信息不代表异常噢)。http://IP(或者域名):port/web项目资源访问路径/static/img/xxx.jpg。可以看到, 日志信息已经可以正常显示了,乱码问题解决。工程中 ( 图片,文件,js,css 等 )时,如果出现。下载哪个版本由自己决定,但在选择版本前,最好点击左侧的。约定俗成的名字,主要在此处放静态资源,比如。可以自己定义,可以和工程名称不一样,我们这里就用默认的。,不用后续来回切换之前的项目,当然这取决于个人习惯。
2025-06-02 18:04:07
1381
原创 JavaScript正则表达式
<script>// var reg = /pattern/modifiers = /匹配规则/匹配修饰符// 定义正则表达式var reg = /e/i //匹配规则:字符'e';匹配修饰符:i,表示对大小写不敏感// 定义一个字符串// 匹配console.log("str中是否包含e或者E?:" + reg.test(str))//若str中包含e或E,则返回true,反之返回false</script>
2025-05-30 22:28:00
1489
原创 Open3D 最小二乘法拟合曲线——线性回归实现
最小二乘法拟合曲线与拟合直线的核心原理完全相同,都是基于最小化误差平方和的思想,使得所有数据点到该函数的垂直距离的平方和最小但在数学形式和计算复杂度上存在差异最小二乘法拟合直线,用线性回归法、梯度下降法实现_最小二乘法拟合直线回归-CSDN博客。
2025-05-30 12:09:12
1343
原创 【Java Web】速通JavaScript
是一种基于对象的脚本语言,它不仅可以创建对象,也能使用现有的对象。中有明确的数据类型,但是声明一个变量后它可以接收任何类型的数据,并且会在程序执行过程中根据。属性名:值, //定义属性。属性名:值, //定于属性。函数名:function() { },//定义函数。② %在模 0 时,结果是 NaN(Not a Number),而不是报错。① / 在除 0 时,结果是 Infinity,而不是报错。能够实现封装,可以模拟继承(但不是真正的继承),
2025-05-29 16:34:01
1222
原创 【Java Web】速通HTML
HTML是网页内容的载体。"网页内容"就是指网页制作者放在页面上想要让用户浏览的信息,包括文字图片视频等。如下就是基础的没有任何CSS样式的HTML页面🆗,以上就是本文内容,表格标签和表单标签是必须掌握的,尤其是表单标签,后期使用频率很高,几乎是不可避免。
2025-05-29 10:00:29
1062
原创 CloudCompare——点云统计滤波
点云统计滤波器,全称是,是点云处理中最常用的去噪方法之一,用于去除明显的离群点。其核心思想是通过计算每个点与领域点的距离分布特征,剔除掉不符合统计规律的离群点,此去噪算法特别适合去除激光雷达或深度相机采集点云时所采集到的孤立噪点。生成的新文件即为原牛体采用统计滤波之后的点云文件。Open3D 统计滤波器-CSDN博客。① 框选出点云,然后点击右上角的。统计滤波的算法原理和。
2025-05-28 21:59:22
711
原创 Open3D 中的坐标系
中所有的方法都以右手坐标系为前提条件实现。该函数可以创建一个坐标系。轴分别呈现为红色、绿色和蓝色箭头。使用的坐标系是最常用的。
2025-05-28 15:22:53
528
原创 二维坐标变换、三维坐标变换、综合变换
① 坐标系动,点不动(被动变换)② 点动,坐标系不动(主动变换)两种方式分别对应不同的应用场景缩放变换在前文的二维缩放变换已经讲的很清楚了,所以就不再过多赘述了,直接推广到三维即可。不理解的地方可以往前看看同样,平移变换在前文的二维缩放变换已经讲的很清楚了,所以就不再过多赘述了,直接推广到三维即可。不理解的地方可以往前看看🆗,以上就是本文的全部内容。二维坐标变换比较简单,而三维坐标变换相对较难,所需要的知识储备更多,需要知道什么是左手坐标系、什么是右手坐标系、点云中心点归0、齐次坐标。
2025-05-26 18:58:01
1617
1
原创 点云的中心点、中心化操作
点云中心点归零的代码实现比较简单,用 ai 随便写一个就行,这里就不提供代码了。如果点云的中心点位置位于坐标系的。可以看到,上图中的牛体点云的中心位置并不在坐标系的。那有没有办法可以使得点云的中心位置位于坐标系的原点。其实很好理解,质心可以理解为是点云中所有点的一个。2.3 补充问题:中心化后 (0,0,0) 点是否真的存在点?而且原始点云中的点只是坐标被调整了,并没有新增或删除点。此时,中心化后的点云中心是坐标系原点。,那这些离散的点的中心点(中心位置)在哪呢?,不一定恰好与某个原始点重合。
2025-05-24 12:21:13
875
原创 三维空间左右手坐标系、分辨方法、左右手法则
定义物体在平面上,即二维的位置时,使用表示两个方向的坐标轴,称作笛卡尔坐标或直角坐标而在三维空间中,使用这3个坐标轴。平面上的位置用"纵"、"横"值来表示,而三维空间位置则在"纵"、"横"的基础上又加上"深",因此需要用3个坐标来表示。
2025-05-23 09:23:22
1850
原创 Open3D 两级去噪:统计滤波 + 半径滤波结合使用
Open3D 统计滤波器-CSDN博客点云统计滤波器,全称是,是点云处理中最常用的去噪方法之一,用于去除明显的离群点。其核心思想是通过计算每个点与领域点的距离分布特征,剔除掉不符合统计规律的离群点,此去噪算法特别适合去除激光雷达或深度相机采集点云时所采集到的孤立噪点。① 统计滤波算法原理② Open3D 实现统计滤波Open3D 半径滤波器-CSDN博客全称,是一种基于邻域密度的点云去噪方法。
2025-05-22 15:12:56
1132
原创 Open3D 半径滤波器
全称,是一种基于邻域密度的点云去噪方法。它的思路非常直接直接和简单,就是在点云数据中,该算法要求每一个点在一定的半径范围内至少有足够多的邻点,否则就会被当作噪声点移除有效点通常位于密度较高的区域,而噪声点往往孤立存在。
2025-05-21 19:16:26
1025
原创 Open3D 统计滤波器
点云统计滤波器,全称是,是点云处理中最常用的去噪方法之一,用于去除明显的离群点。其核心思想是通过计算每个点与领域点的距离分布特征,剔除掉不符合统计规律的离群点,此去噪算法特别适合去除激光雷达或深度相机采集点云时所采集到的孤立噪点。
2025-05-21 18:21:34
1087
原创 labelme的安装与使用(以关键点检测为例)、labelme格式标签转换
参考笔记:Labelme标注工具安装及使用_labelme安装及使用教程-CSDN博客学习视频:同济子豪兄:标注关键点检测数据集_哔哩哔哩_bilibili目录1.labelme的安装1.1 方法一:直接下载官方提供的Labelme.exe1.2. 方法二:通过命令行安装2.labelme的使用3.解析标注后生成的json文件(以关键点检测为例)4.labelme格式标签转换---关键点检测任务4.1 labelme转YOLO格式4.1.1 yolov8关键点识别模型标签格式解析4.1.2 转换代码4.2
2025-05-20 11:21:47
2462
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅