K-均值聚类算法是一种常见的无监督学习算法,用于将数据集划分成K个类别(簇),其中K是一个用户定义的参数。
算法流程: 1.随机选取K个点作为簇的质心。 2.将每个数据点分配到距离最近的质心所在的簇中。 3.根据分配到每个簇中的数据点重新计算该簇的质心。 4.重复步骤2和3直到质心不再变化或达到最大迭代次数。
优点: 1.可扩展性好,适用于大型数据集。 2.简单易实现,容易理解。
缺点: 1.需要手动选择簇的数量K。 2.对于非凸形状的簇表现不佳。 3.对初始点的选取敏感,可能会导致不同的结果。
知道K值很重要,但是在现实世界中确定k值往往不是一项容易的任务。
K-means 聚类算法不适用于非凸的数据,这是由于它基于数据点之间的距离。同样,在数据中密度不相等的情况下,K-means 聚类无法表现良好,因为它假定所有数据簇是同等的大小的球形,这可能会导致算法渲染一些不准确的结果。
总的来说,K-均值聚类算法是一种基本但强大的无监督学习算法,因为其可扩展性和易用性而深受社区的喜爱。