闲话不多说,直接上干货。
1、首先自行准备好linux虚拟机(centos),本文采用的是hadoop2.x版本,故不适用于过高版本,在centos7.0之后便不再支持hadoop2.x版本,必须使用hadoop3.x版本,然而其实大部分情况下我们还是使用2.x版本,因为其稳定性。在这里我使用的是centos6.9版本。
2、修改linux主机名
在这里根据你想要搭建的集群数量可以依次以node0x或者以某种形式命名
3、进行联网配置
需要说明的是这里的ip地址必须要和你当前ip地址的网段相同,子网掩码和网关也是需要一样,如果不清楚可以自行去本地电脑的网络查看,最后一个DNS1是用来解析域名的,这里就可以如上填就可以了,还有一个需要注意的就是HWADDR属性,这里请自行去虚拟机vm上的网络高级中查看。
接着是修改mac地址
这里的mac地址与上一部的HWADDR属性相对应,在第一次修改时,里面可能已经存在这时候可以在编辑模式下dd删除,然后注意最后一个属性NAME,这里必须要和上述DEVICE对应,博主在搭建虚拟机时,因为这里的疏忽时不时就会出现连不上网的情况。
重启,然后可以ping一下百度的网址,如果成功那么说明联网成功。
4.修改主机名和IP的映射关系
5.关闭防火墙和selinux
6.ssh免登陆
在这里主要做的是生成秘钥复制,然后可以进行免密登录,当然前提是在第3步中你的主机名和ip映射已经配置好了,然后在下一步我们可以下载一个连接虚拟机的第三方平台,可以选择secureCRT或者finalshell,两个都非常好用,这里可以自行选择。
可以直接在finalshell官网进行下载安装
7、在finalshell上进行连接
点击这个图标创建ssh连接
8、安装jdk
一般我们选择jdk1.8版本,在过高版本的jdk安装时,出现了与hadoop版本不兼容的情况。
可以选择在上述的官网中下载,也可以自行查询。
下载完之后可以直接将安装包拖进finalshell中的目录中,假如我们没有下载finalshell或者secureCRT那么上传必须要安装rz第三方包,使用rz命令,网上特别多的教程有安装rz命令包的,但大都是yum安装,然而现在的yum源很多已经无效,那么你还要去修改源地址,没有这个方便,对于不熟悉linux的小伙伴来说,有时候修改配置可能会直接修改了系统配置,对于新手来说那么就得不偿失了。
下载完包之后,先来创建两个文件夹
servers文件夹来存放我们所有的软件
softwares文件夹可以用来存放所有的压缩包,说到这里忘了说tab键自动补全不要忘记了。
将jdk安装包上传至softwares中,然后压缩到servers文件夹中
解压完成之后复制传输给其他节点
PWD表示的是当前路径,当然也可以写绝对路径
然后配置每一台节点的环境变量
拉到最下面加入这两行,然后wq保存退出
9.注意集群时间要同步
这一步不是必要的,如果需要的小伙伴可以自行设置
10.安装Hadoop安装包
Index of /dist/hadoop/common/hadoop-2.7.5
请注意下载的是以tar.gz为结尾的安装包,src结尾的是源码包,是后续拿来阅读源码或者是进行二次开发的包。
和安装jdk一样,上传,解压,这里请自己练习一下手
打开hadoop/etc/hadoop目录之后需要修改以下几个文件
--------------------------------
修改hadoop-env.sh
cd /export/server/hadoop-2.7.5/etc/Hadoop
vim hadoop-env.sh
export JAVA_HOME=/export/server/jdk1.8.0
export HDFS_NAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_JOURNALNODE_USER=root
export HDFS_ZKFC_USER=root
------------------------------------
修改core-site.xml
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://mycluster</value>
</property>
<!-- hadoop本地磁盘存放数据的公共目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/export/data/ha-hadoop</value>
</property>
<!-- ZooKeeper集群的地址和端口-->
<property>
<name>ha.zookeeper.quorum</name>
<value>node01:2181,node02:2181,node03:2181</value>
</property>
</configuration>
------------------------------------
修改hdfs-site.xml
<configuration>
<!--指定hdfs的nameservice为mycluster,需要和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>mycluster</value>
</property>
<!-- mycluster下面有两个NameNode,分别是nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.mycluster</name>
<value>nn1,nn2</value>
</property>
<!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.mycluster.nn1</name>
<value>node01:8020</value>
</property>
<!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.mycluster.nn1</name>
<value>node01:9870</value>
</property>
<!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.mycluster.nn2</name>
<value>node02:8020</value>
</property>
<!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.mycluster.nn2</name>
<value>node02:9870</value>
</property>
<!-- 指定NameNode的edits元数据在JournalNode上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://node01:8485;node02:8485;node03:8485/mycluster</value>
</property>
<!-- 指定JournalNode在本地磁盘存放数据的位置 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/export/data/journaldata</value>
</property>
<!-- 开启NameNode失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!-- 指定该集群出故障时,哪个实现类负责执行故障切换 -->
<property>
<name>dfs.client.failover.proxy.provider.mycluster</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 配置隔离机制方法-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<!-- 使用sshfence隔离机制时需要ssh免登陆 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/root/.ssh/id_rsa</value>
</property>
<!-- 配置sshfence隔离机制超时时间 -->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
</configuration>
------------------------------------
修改mapred-site.xml
<configuration>
<!-- 指定mr框架为yarn方式 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
------------------------------------
修改yarn-site.xml
<configuration>
<!-- 开启RM高可用 -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!-- 指定RM的cluster id -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yrc</value>
</property>
<!-- 指定RM的名字 -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!-- 分别指定RM的地址 -->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>node01</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>node02</value>
</property>
<!-- 指定zk集群地址 -->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>node01:2181,node02:2181,node03:2181</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
------------------------------------
修改slaves
node01
node02
node03
------------------------------------
上面的复制粘贴就好,这里需要注意的是,一般在后期集群的datanode节点不够用时,可以进行磁盘挂载,可以自行设置属性。
配置hadoop的环境变量
vim /etc/profile
使环境变量生效,
source /etc/profile
然后分发给各个节点。
至此hadoop集群已经安装完毕,但是由于高可用集群的特殊性,所以必须要安装zookeeper组件。
11、安装zookeeper
ZooKeeper: Because Coordinating Distributed Systems is a Zoo
上传,解压。
修改配置:
cd /export/server/zookeeper-3.4.14/conf/
cp zoo_sample.cfg zoo.cfg
vim zoo.cfg
修改:dataDir=/export/data/zkdata
在最后添加:
server.1=node1:2888:3888
server.2=node2:2888:3888
server.3=node3:2888:3888
保存退出
然后创建一个tmp文件夹
mkdir /export/data/zkdata
echo 1 > /export/data/zkdata/myid
将配置好的zookeeper拷贝到其他节点
scp -r /export/server/zookeeper-3.4.14 node2:/export/servers
scp -r /export/server/zookeeper-3.4.14 node3:/export/servers
编辑node2、node3对应/export/data/zkdata/myid内容
node2:
mkdir /export/data/zkdata
echo 2 > /export/data/zkdata/myid
node3:
mkdir /export/data/zkdata
echo 3 > /export/data/zkdata/myid
至此zookeeper安装完毕。
12、启动集群
请注意这里需要有严格的启动顺序
bin/zkServer.sh start 在每个节点上启动zookeeper
hadoop-daemon.sh start journalnode 启动journalnode
hdfs namenode -format 格式化namenode
(请不要随便格式化namenode,一般就是第一次启动时会进行格式化,因为每格式化一次之后会生成一个id号,并存储下来,也就是说当集群启动时,会有两个id号匹配不上而导致集群启动不起来。)
hdfs --daemon start namenode
启动namenode在node01节点上
hdfs namenode -bootstrapStandby
在node2上进行元数据同步
hdfs zkfc -formatZK
格式化zkfc
start-dfs.sh
启动集群
start-yarn.sh
启动yarn集群
jps
命令 可以查看各个进程
创作不易,学生党一枚,第一次写,谢谢