Python微信订餐小程序课程视频
https://blog.csdn.net/m0_56069948/article/details/122285951
Python实战量化交易理财系统
https://blog.csdn.net/m0_56069948/article/details/122285941
在图论中,介数(Betweenness)反应节点在整个网络中的作用和影响力。而本文主要介绍如何基于 Nebula Graph 图数据库实现 Betweenness Centrality 介数中心性的计算。
1. 算法介绍
中心性是用来衡量一个节点在整个网络图中所在中心程度的概念,包括度中心性、接近中心性、中介中心性等。 其中度中心性通过节点的度数(即关联的边数)来刻画节点的受欢迎程度,接近中心性是通过计算每个节点到全图其他所有节点的路径和来刻画节点与其他所有节点的关系密切程度。
中介中心性则用于衡量一个顶点出现在其他任意两个顶点对之间最短路径上的次数,从而来刻画节点的重要性。
节点介数中心性的定义是:在所有最短路径中经过该节点的路径数目占最短路径总数的占比。
计算图中节点的介数中心性分为两种情况:有权图上的介数中心性和无权图上的介数中心性。两者的区别在于求最短路径时使用的方法不同,对于无权图采用 BFS(宽度优先遍历)求最短路径,对于有权图采用 Dijkstra 算法求最短路径。
下面所介绍的算法都是针对无向图的。
2. 应用场景
介数反应节点在整个网络中的作用和影响力,主要用于衡量一个顶点在图或网络中承担“桥梁”角色的程度,图中节点 C 就是一个重要的桥梁节点。
中心性可用于金融风控领域中反欺诈场景里中介实体的识别。也可用于医药领域中特定疾病控制基因的识别,用以改进药品的靶点。
3. 介数中心性公式
节点介数中心性的计算公式如下:
(公式 1)
其中