LeetCode 221. 最大正方形

221. 最大正方形

在一个由 '0' 和 '1' 组成的二维矩阵内,找到只包含 '1' 的最大正方形,并返回其面积。

示例 1:

输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
输出:4

示例 2:

输入:matrix = [["0","1"],["1","0"]]
输出:1

示例 3:

输入:matrix = [["0"]]
输出:0

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 300
  • matrix[i][j] 为 '0' 或 '1'

解法:二维前缀和 + 二分查找

同类题型:LeetCode 1292. 元素和小于等于阈值的正方形的最大边长-CSDN博客

LeetCode 1738. 找出第 K 大的异或坐标值-CSDN博客

LeetCode 3070. 元素和小于等于 k 的子矩阵的数目-CSDN博客

Java版:

class Solution {
    public int maximalSquare(char[][] matrix) {
        int m = matrix.length;
        int n = matrix[0].length;
        int[][] presum = new int[m + 1][n + 1];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                presum[i + 1][j + 1] = presum[i + 1][j] + presum[i][j + 1] - presum[i][j] + Integer.parseInt(String.valueOf(matrix[i][j]));
            }
        }
        int l = 1;
        int r = Math.min(m, n);
        while (l <= r) {
            int mid = l + (r - l) / 2;
            boolean find = false;
            for (int i = 0; i <= m - mid; i++) {
                for (int j = 0; j <= n - mid; j++) {
                    if (presum[i + mid][j + mid] - presum[i + mid][j] - presum[i][j + mid] + presum[i][j] == mid * mid) {
                        find = true;
                        break;
                    }
                }
                if (find) {
                    break;
                }
            }
            if (find) {
                l = mid + 1;
            } else {
                r = mid - 1;
            }
        }
        return r * r;
    }
}

Python3版:

class Solution:
    def maximalSquare(self, matrix: List[List[str]]) -> int:
        m = len(matrix)
        n = len(matrix[0])
        presum = [[0] * (n + 1) for _ in range(m + 1)]
        for i in range(m):
            for j in range(n):
                presum[i + 1][j + 1] = presum[i + 1][j] + presum[i][j + 1] - presum[i][j] + int(matrix[i][j])
        
        l = 1
        r = min(m, n)
        while l <= r:
            mid = l + (r - l) // 2
            find = False
            for i in range(m - mid + 1):
                for j in range(n - mid + 1):
                    if presum[i + mid][j + mid] - presum[i + mid][j] - presum[i][j + mid] + presum[i][j] == mid * mid:
                        find = True
                        break
                if find:
                    break 
            if find:
                l = mid + 1
            else:
                r = mid - 1
        return r * r

复杂度分析

  • 时间复杂度:O(mn∗log⁡min⁡(m,n)),其中 m 和 n 分别为 matrix 的行数和列数。二分查找的次数为 O(log⁡ min⁡(m,n)),在每次二分查找中,需要枚举所有边长为 mid 的矩形,数量为 O(mn),因此总时间复杂度为 O(mn∗log⁡min⁡(m,n))。
  • 空间复杂度:O(mn)。

解法2:动态规划

解法一虽然直观,但是时间复杂度太高,有没有办法降低时间复杂度呢?

可以使用动态规划降低时间复杂度。我们用 dp(i,j) 表示以 (i,j) 为右下角,且只包含 1 的正方形的边长最大值。如果我们能计算出所有 dp(i,j) 的值,那么其中的最大值即为矩阵中只包含 1 的正方形的边长最大值,其平方即为最大正方形的面积。

那么如何计算 dp 中的每个元素值呢?对于每个位置 (i,j),检查在矩阵中该位置的值:

如果该位置的值是 0,则 dp(i,j)=0,因为当前位置不可能在由 1 组成的正方形中;

如果该位置的值是 1,则 dp(i,j) 的值由其上方、左方和左上方的三个相邻位置的 dp 值决定。具体而言,当前位置的元素值等于三个相邻位置的元素中的最小值加 1,状态转移方程如下:

dp(i,j)=min(dp(i−1,j),dp(i−1,j−1),dp(i,j−1))+1

此外,还需要考虑边界条件。如果 i 和 j 中至少有一个为 0,则以位置 (i,j) 为右下角的最大正方形的边长只能是 1,因此 dp(i,j)=1。

以下用一个例子具体说明。原始矩阵如下。

0 1 1 1 0

1 1 1 1 0

0 1 1 1 1

0 1 1 1 1

0 0 1 1 1

对应的 dp 值如下。

0 1 1 1 0

1 1 2 2 0

0 1 2 3 1

0 1 2 3 2

0 0 1 2 3

下图也给出了计算 dp 值的过程。

Java版:

class Solution {
    public int maximalSquare(char[][] matrix) {
        int m = matrix.length;
        int n = matrix[0].length;
        int[][] dp = new int[m][n];
        int maxside = 0;
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (matrix[i][j] == '1') {
                    if (i == 0 || j == 0) {
                        dp[i][j] = 1;
                    } else {
                        dp[i][j] = Math.min(Math.min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
                    }
                }
                maxside = Math.max(maxside, dp[i][j]);
            }
        }
        return maxside * maxside;
    }
}

Python3版:

class Solution:
    def maximalSquare(self, matrix: List[List[str]]) -> int:
        m = len(matrix)
        n = len(matrix[0])
        dp = [[0] * n for _ in range(m)]
        maxside = 0
        for i in range(m):
            for j in range(n):
                if matrix[i][j] == '1':
                    if i == 0 or j == 0:
                        dp[i][j] = 1
                    else: 
                        dp[i][j] = min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) + 1
                    maxside = max(maxside, dp[i][j])
        return maxside * maxside

复杂度分析

  • 时间复杂度:O(mn),其中 m 和 n 是矩阵的行数和列数。需要遍历原始矩阵中的每个元素计算 dp 的值。
  • 空间复杂度:O(mn),其中 m 和 n 是矩阵的行数和列数。创建了一个和原始矩阵大小相同的矩阵 dp。由于状态转移方程中的 dp(i,j) 由其上方、左方和左上方的三个相邻位置的 dp 值决定,因此可以使用两个一维数组进行状态转移,空间复杂度优化至 O(n)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值