在一个由 '0'
和 '1'
组成的二维矩阵内,找到只包含 '1'
的最大正方形,并返回其面积。
示例 1:
输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]] 输出:4
示例 2:
输入:matrix = [["0","1"],["1","0"]] 输出:1
示例 3:
输入:matrix = [["0"]] 输出:0
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 300
matrix[i][j]
为'0'
或'1'
解法:二维前缀和 + 二分查找
同类题型:LeetCode 1292. 元素和小于等于阈值的正方形的最大边长-CSDN博客
LeetCode 1738. 找出第 K 大的异或坐标值-CSDN博客
LeetCode 3070. 元素和小于等于 k 的子矩阵的数目-CSDN博客
Java版:
class Solution {
public int maximalSquare(char[][] matrix) {
int m = matrix.length;
int n = matrix[0].length;
int[][] presum = new int[m + 1][n + 1];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
presum[i + 1][j + 1] = presum[i + 1][j] + presum[i][j + 1] - presum[i][j] + Integer.parseInt(String.valueOf(matrix[i][j]));
}
}
int l = 1;
int r = Math.min(m, n);
while (l <= r) {
int mid = l + (r - l) / 2;
boolean find = false;
for (int i = 0; i <= m - mid; i++) {
for (int j = 0; j <= n - mid; j++) {
if (presum[i + mid][j + mid] - presum[i + mid][j] - presum[i][j + mid] + presum[i][j] == mid * mid) {
find = true;
break;
}
}
if (find) {
break;
}
}
if (find) {
l = mid + 1;
} else {
r = mid - 1;
}
}
return r * r;
}
}
Python3版:
class Solution:
def maximalSquare(self, matrix: List[List[str]]) -> int:
m = len(matrix)
n = len(matrix[0])
presum = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(m):
for j in range(n):
presum[i + 1][j + 1] = presum[i + 1][j] + presum[i][j + 1] - presum[i][j] + int(matrix[i][j])
l = 1
r = min(m, n)
while l <= r:
mid = l + (r - l) // 2
find = False
for i in range(m - mid + 1):
for j in range(n - mid + 1):
if presum[i + mid][j + mid] - presum[i + mid][j] - presum[i][j + mid] + presum[i][j] == mid * mid:
find = True
break
if find:
break
if find:
l = mid + 1
else:
r = mid - 1
return r * r
复杂度分析
- 时间复杂度:O(mn∗logmin(m,n)),其中 m 和 n 分别为 matrix 的行数和列数。二分查找的次数为 O(log min(m,n)),在每次二分查找中,需要枚举所有边长为 mid 的矩形,数量为 O(mn),因此总时间复杂度为 O(mn∗logmin(m,n))。
- 空间复杂度:O(mn)。
解法2:动态规划
解法一虽然直观,但是时间复杂度太高,有没有办法降低时间复杂度呢?
可以使用动态规划降低时间复杂度。我们用 dp(i,j) 表示以 (i,j) 为右下角,且只包含 1 的正方形的边长最大值。如果我们能计算出所有 dp(i,j) 的值,那么其中的最大值即为矩阵中只包含 1 的正方形的边长最大值,其平方即为最大正方形的面积。
那么如何计算 dp 中的每个元素值呢?对于每个位置 (i,j),检查在矩阵中该位置的值:
如果该位置的值是 0,则 dp(i,j)=0,因为当前位置不可能在由 1 组成的正方形中;
如果该位置的值是 1,则 dp(i,j) 的值由其上方、左方和左上方的三个相邻位置的 dp 值决定。具体而言,当前位置的元素值等于三个相邻位置的元素中的最小值加 1,状态转移方程如下:
dp(i,j)=min(dp(i−1,j),dp(i−1,j−1),dp(i,j−1))+1
此外,还需要考虑边界条件。如果 i 和 j 中至少有一个为 0,则以位置 (i,j) 为右下角的最大正方形的边长只能是 1,因此 dp(i,j)=1。
以下用一个例子具体说明。原始矩阵如下。
0 1 1 1 0
1 1 1 1 0
0 1 1 1 1
0 1 1 1 1
0 0 1 1 1
对应的 dp 值如下。
0 1 1 1 0
1 1 2 2 0
0 1 2 3 1
0 1 2 3 2
0 0 1 2 3
下图也给出了计算 dp 值的过程。
Java版:
class Solution {
public int maximalSquare(char[][] matrix) {
int m = matrix.length;
int n = matrix[0].length;
int[][] dp = new int[m][n];
int maxside = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (matrix[i][j] == '1') {
if (i == 0 || j == 0) {
dp[i][j] = 1;
} else {
dp[i][j] = Math.min(Math.min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
}
}
maxside = Math.max(maxside, dp[i][j]);
}
}
return maxside * maxside;
}
}
Python3版:
class Solution:
def maximalSquare(self, matrix: List[List[str]]) -> int:
m = len(matrix)
n = len(matrix[0])
dp = [[0] * n for _ in range(m)]
maxside = 0
for i in range(m):
for j in range(n):
if matrix[i][j] == '1':
if i == 0 or j == 0:
dp[i][j] = 1
else:
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) + 1
maxside = max(maxside, dp[i][j])
return maxside * maxside
复杂度分析
- 时间复杂度:O(mn),其中 m 和 n 是矩阵的行数和列数。需要遍历原始矩阵中的每个元素计算 dp 的值。
- 空间复杂度:O(mn),其中 m 和 n 是矩阵的行数和列数。创建了一个和原始矩阵大小相同的矩阵 dp。由于状态转移方程中的 dp(i,j) 由其上方、左方和左上方的三个相邻位置的 dp 值决定,因此可以使用两个一维数组进行状态转移,空间复杂度优化至 O(n)。