给你一个 m * n
的矩阵,矩阵中的元素不是 0
就是 1
,请你统计并返回其中完全由 1
组成的 正方形 子矩阵的个数。
示例 1:
输入:matrix = [ [0,1,1,1], [1,1,1,1], [0,1,1,1] ] 输出:15 解释: 边长为 1 的正方形有 10 个。 边长为 2 的正方形有 4 个。 边长为 3 的正方形有 1 个。 正方形的总数 = 10 + 4 + 1 = 15.
示例 2:
输入:matrix = [ [1,0,1], [1,1,0], [1,1,0] ] 输出:7 解释: 边长为 1 的正方形有 6 个。 边长为 2 的正方形有 1 个。 正方形的总数 = 6 + 1 = 7.
提示:
1 <= arr.length <= 300
1 <= arr[0].length <= 300
0 <= arr[i][j] <= 1
提示 1
Create an additive table that counts the sum of elements of submatrix with the superior corner at (0,0).
提示 2
Loop over all subsquares in O(n^3) and check if the sum make the whole array to be ones, if it checks then add 1 to the answer.
解法1:二维前缀和 + 枚举
Java版:
class Solution {
public int countSquares(int[][] matrix) {
int m = matrix.length;
int n = matrix[0].length;
int[][] presum = new int[m + 1][n + 1];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
presum[i + 1][j + 1] = presum[i + 1][j] + presum[i][j + 1] - presum[i][j] + matrix[i][j];
}
}
int ans = 0;
for (int e = 1; e <= Math.min(m, n); e++) {
for (int i = 0; i <= m - e; i++) {
for (int j = 0; j <= n - e; j++) {
if (presum[i + e][j + e] - presum[i + e][j] - presum[i][j + e] + presum[i][j] == e * e) {
ans++;
}
}
}
}
return ans;
}
}
Python3版:
class Solution:
def countSquares(self, matrix: List[List[int]]) -> int:
m = len(matrix)
n = len(matrix[0])
presum = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(m):
for j in range(n):
presum[i + 1][j + 1] = presum[i + 1][j] + presum[i][j + 1] - presum[i][j] + matrix[i][j]
ans = 0
for e in range(1, min(m, n) + 1):
for i in range(m - e + 1):
for j in range(n - e + 1):
if matrix[i][j] == 0:
continue
if presum[i + e][j + e] - presum[i][j + e] - presum[i + e][j] + presum[i][j] == e * e:
ans += 1
return ans
复杂度分析
- 时间复杂度:O(mn∗min(m,n)),其中 m 和 n 分别为 matrix 的行数和列数。正方形边长最大为 O(min(m,n)),正方形边长可能的数量为O(min(m,n))。需要枚举所有边长为 e 的矩形,数量为 O(mn),因此总时间复杂度为 O(mn∗min(m,n))。
- 空间复杂度:O(mn)。
解法2:动态规划
可以使用动态规划降低时间复杂度。我们用 dp(i,j) 表示以 (i,j) 为右下角,且只包含 1 的正方形的边长最大值。如果我们能计算出所有 dp(i,j) 的值,那么其中的最大值即为矩阵中只包含 1 的正方形的边长最大值,其平方即为最大正方形的面积。
那么如何计算 dp 中的每个元素值呢?对于每个位置 (i,j),检查在矩阵中该位置的值:
如果该位置的值是 0,则 dp(i,j)=0,因为当前位置不可能在由 1 组成的正方形中;
如果该位置的值是 1,则 dp(i,j) 的值由其上方、左方和左上方的三个相邻位置的 dp 值决定。具体而言,当前位置的元素值等于三个相邻位置的元素中的最小值加 1,状态转移方程如下:
dp(i,j)=min(dp(i−1,j),dp(i−1,j−1),dp(i,j−1))+1
此外,还需要考虑边界条件。如果 i 和 j 中至少有一个为 0,则以位置 (i,j) 为右下角的最大正方形的边长只能是 1,因此 dp(i,j)=1。
以下用一个例子具体说明,下图给出了计算 dp 值的过程。
Java版:
class Solution {
public int countSquares(int[][] matrix) {
int m = matrix.length;
int n = matrix[0].length;
int[][] dp = new int[m][n];
int ans = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (matrix[i][j] == 1) {
if (i == 0 || j == 0) {
dp[i][j] = 1;
ans += dp[i][j];
} else {
dp[i][j] = Math.min(Math.min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
ans += dp[i][j];
}
}
}
}
return ans;
}
}
Python版:
class Solution:
def countSquares(self, matrix: List[List[int]]) -> int:
m = len(matrix)
n = len(matrix[0])
dp = [[0] * n for _ in range(m)]
ans = 0
for i in range(m):
for j in range(n):
if matrix[i][j] == 1:
if i == 0 or j == 0:
dp[i][j] = 1
ans += dp[i][j]
else:
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) + 1
ans += dp[i][j]
return ans
复杂度分析
- 时间复杂度:O(mn),其中 m 和 n 分别为 matrix 的行数和列数。
- 空间复杂度:O(mn)。