LeetCode 1277. 统计全为 1 的正方形子矩阵

1277. 统计全为 1 的正方形子矩阵

给你一个 m * n 的矩阵,矩阵中的元素不是 0 就是 1,请你统计并返回其中完全由 1 组成的 正方形 子矩阵的个数。

示例 1:

输入:matrix =
[
  [0,1,1,1],
  [1,1,1,1],
  [0,1,1,1]
]
输出:15
解释: 
边长为 1 的正方形有 10 个。
边长为 2 的正方形有 4 个。
边长为 3 的正方形有 1 个。
正方形的总数 = 10 + 4 + 1 = 15.

示例 2:

输入:matrix = 
[
  [1,0,1],
  [1,1,0],
  [1,1,0]
]
输出:7
解释:
边长为 1 的正方形有 6 个。 
边长为 2 的正方形有 1 个。
正方形的总数 = 6 + 1 = 7.

提示:

  • 1 <= arr.length <= 300
  • 1 <= arr[0].length <= 300
  • 0 <= arr[i][j] <= 1

提示 1

Create an additive table that counts the sum of elements of submatrix with the superior corner at (0,0).


提示 2

Loop over all subsquares in O(n^3) and check if the sum make the whole array to be ones, if it checks then add 1 to the answer.

解法1:二维前缀和 + 枚举

Java版:

class Solution {
    public int countSquares(int[][] matrix) {
        int m = matrix.length;
        int n = matrix[0].length;
        int[][] presum = new int[m + 1][n + 1];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                presum[i + 1][j + 1] = presum[i + 1][j] + presum[i][j + 1] - presum[i][j] + matrix[i][j];
            }
        }
        int ans = 0;
        for (int e = 1; e <= Math.min(m, n); e++) {
            for (int i = 0; i <= m - e; i++) {
                for (int j = 0; j <= n - e; j++) {
                    if (presum[i + e][j + e] - presum[i + e][j] - presum[i][j + e] + presum[i][j] == e * e) {
                        ans++;
                    }
                }
            } 
        }
        return ans;
    }
}

Python3版:

class Solution:
    def countSquares(self, matrix: List[List[int]]) -> int:
        m = len(matrix)
        n = len(matrix[0])
        presum = [[0] * (n + 1) for _ in range(m + 1)]
        for i in range(m):
            for j in range(n):
                presum[i + 1][j + 1] = presum[i + 1][j] + presum[i][j + 1] - presum[i][j] + matrix[i][j]
        ans = 0
        for e in range(1, min(m, n) + 1):
            for i in range(m - e + 1):
                for j in range(n - e + 1):
                    if matrix[i][j] == 0:
                        continue
                    if presum[i + e][j + e] - presum[i][j + e] - presum[i + e][j] + presum[i][j] == e * e:
                        ans += 1
        return ans

复杂度分析

  • 时间复杂度:O(mn∗⁡min⁡(m,n)),其中 m 和 n 分别为 matrix 的行数和列数。正方形边长最大为 O(min⁡(m,n)),正方形边长可能的数量为O(min⁡(m,n))。需要枚举所有边长为 e 的矩形,数量为 O(mn),因此总时间复杂度为 O(mn∗min⁡(m,n))。
  • 空间复杂度:O(mn)。

解法2:动态规划

可以使用动态规划降低时间复杂度。我们用 dp(i,j) 表示以 (i,j) 为右下角,且只包含 1 的正方形的边长最大值。如果我们能计算出所有 dp(i,j) 的值,那么其中的最大值即为矩阵中只包含 1 的正方形的边长最大值,其平方即为最大正方形的面积。

那么如何计算 dp 中的每个元素值呢?对于每个位置 (i,j),检查在矩阵中该位置的值:

如果该位置的值是 0,则 dp(i,j)=0,因为当前位置不可能在由 1 组成的正方形中;

如果该位置的值是 1,则 dp(i,j) 的值由其上方、左方和左上方的三个相邻位置的 dp 值决定。具体而言,当前位置的元素值等于三个相邻位置的元素中的最小值加 1,状态转移方程如下:

dp(i,j)=min(dp(i−1,j),dp(i−1,j−1),dp(i,j−1))+1

此外,还需要考虑边界条件。如果 i 和 j 中至少有一个为 0,则以位置 (i,j) 为右下角的最大正方形的边长只能是 1,因此 dp(i,j)=1。

以下用一个例子具体说明,下图给出了计算 dp 值的过程。

Java版:

class Solution {
    public int countSquares(int[][] matrix) {
        int m = matrix.length;
        int n = matrix[0].length;
        int[][] dp = new int[m][n];
        int ans = 0;
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (matrix[i][j] == 1) {
                    if (i == 0 || j == 0) {
                        dp[i][j] = 1;
                        ans += dp[i][j];
                    } else {
                        dp[i][j] = Math.min(Math.min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
                        ans += dp[i][j];
                    }
                }
            }
        }
        return ans;
    }
}

Python版:

class Solution:
    def countSquares(self, matrix: List[List[int]]) -> int:
        m = len(matrix)
        n = len(matrix[0])
        dp = [[0] * n for _ in range(m)]
        ans = 0
        for i in range(m):
            for j in range(n):
                if matrix[i][j] == 1:
                    if i == 0 or j == 0:
                        dp[i][j] = 1
                        ans += dp[i][j]
                    else:
                        dp[i][j] = min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) + 1
                        ans += dp[i][j]
        return ans

复杂度分析

  • 时间复杂度:O(mn),其中 m 和 n 分别为 matrix 的行数和列数。
  • 空间复杂度:O(mn)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值