算法入门到进阶——二叉树


基本概念

树是非线性数据结构,它能很好的描述数据的层次关系。树形结构的现实场景很常见,例如,文件目录,书本的目录就是典型的树形结构。

二叉树是最常用的树形结构,特别适合程序设计,常常将一般的树转换成二叉树来处理。

二叉树的存储

二叉树的性质

二叉树的每个结点最多有两个子结点,分别是左孩子,右孩子,以它们为根的子树称为左子树和右子树。
二叉树的第i层最多有2的i-1次方给结点。如果每一层的节点数都是满的称它为满二叉树。一个n层的满二叉树,结点数量一共有2的n次方-1个。如果满二叉树只在最后一层有确实,并且确实的编号都在最后,那么称为完全二叉树

在这里插入图片描述

二叉树的存储结构

二叉树一般使用指针来实现,并指向左右子结点。

struct node{
	int value;  //结点的值
	 node *left,*right;  //指向左右结点
}node;

在新建一个node时,用new运算符动态申请内存。使用完毕后,应该用delete释放它,否则会内存泄漏。

二叉树也可以用数组来实现。特别是完全二叉树,用数组来表示父结点和子结点的关系非常简便。

二叉树的遍历

以如下图作为参考:
在这里插入图片描述

宽度优先遍历

有时候需要按层次一层层的遍历二叉树。如上图按EBGADFICH的顺序进行访问,那么用宽度优先搜索是最合适的。使用队列进行实现。

深度优先遍历

用深度优先搜索遍历二叉树,代码及其简单。
按深度搜索的顺序访问二叉树,对根结点,左儿子,右儿子进行组合。有先序遍历,中序遍历,后续遍历。默认左儿子在右儿子的前面

先序遍历

按父结点,左儿子,右儿子的顺序进行遍历,上图返回的顺序就是:EBADCGFIH

伪代码如下

void preorder(node *root){
	cout<<root->value;
	preoder(root->left);
	preorder(root->right);
}
中序遍历

按左儿子,父结点,右儿子的顺序进行遍历,返回的顺序就是:
ABCDEFGHI 。这不是巧合,因为图这棵树是一个二叉搜索树。在二叉搜索树中,中序遍历实现了排序的功能,返回的就是一个 有序排列。

后序遍历

按左儿子,右儿子,父结点的顺序进行遍历。上图的返回顺序就是:ACDBFHIGE。后序遍历的最后一个结点就是根结点。

如果已知某颗二叉树的3种遍历,可以把这颗树构造出来,即“中序遍历+先序遍历”,“中序遍历+后序遍历”都能确定一颗树,但是“先序遍历+后序遍历不一定能确定一颗树”

例题

题目

输入二叉树的先序和中序遍历,求后序遍历
(1)输入样例:
先序:1 2 4 7 3 5 8 9 6
中序:4 7 2 1 8 5 9 3 6
(2):输出样例:
后序:7 4 2 8 9 5 6 3 1

思路

根据中序遍历和先序遍历的结果,可以确定根结点为1,对比中序遍历,即1的左边的全为左子树上的,1的右边的全为右子树上的。
在这里插入图片描述

源码

#include<iostream>
using namespace std;
const int N = 1024;
int pre[N], in[N], post[N]; //用来存放先序,中序,后序的数据
int k = 1;  //用来存放树的结点数

struct node {
	int value;
	node* left, * right;
	node(int value = 0, node* left = NULL, node* right = NULL) :value(value),left(left),right(right){}
};

//构建树
void buildtree(int left,int right,int &t,node* &root) {
	int flag = -1;
	for (int i = left; i <= right; i++) {
		if (in[i] == pre[t]) { //根据先序遍历的根结点匹配中序遍历
			//根结点的为止区分出左右子树
			flag = i;
			break;
		}
	}
	if (flag == -1) {
		return;  //如果没有根结点了,就直直接返回,不做处理
	}
	root = new node(in[flag]); //如果找到了根结点,就在堆上为该结点申请空间
	t++;//传入先序遍历的下一个,寻找下一个根结点
	if (flag > left)buildtree(left, flag - 1, t, root->left);//建立左子树
	if (flag < right)buildtree(flag + 1, right, t, root->right);//建立右子树
}

//先序遍历输出
void preorder(node* root) {
	if (!root) {
	pre[k++] = root->value;
	preorder(root->left);
	preorder(root->right);
	}
}

//中序遍历输出
void inorder(node* root) {
	if (!root) {
		inorder(root->left);
		in[k++] = root->value;
		inorder(root->right);
	}
}

//后序遍历输出
void postorder(node* root) {
	if (root) {
		postorder(root->left);
		postorder(root->right);
		post[k++] = root->value;
	}
}

//释放空间
void remove_tree(node* root) {
	if (!root) return;
	remove_tree(root->left);
	remove_tree(root->right);
	delete(root);  //该结点左,右儿子均没有就释放该空间
}

int main() {
	cout << "输入结点总数:";
	int n;
	while (scanf_s("%d", &n)!=EOF) {
		cout << "输入先序遍历数据:";
		for (int i = 1; i <= n; i++) scanf_s("%d", &pre[i]);
		cout << "输入后序遍历数据:";
		for (int i = 1; i <= n; i++) scanf_s("%d", &in[i]);

		//传参依据先序和中序的数据构建原始树
		int t = 1;//先序结果中,第一个结点一定是根结点
		node* root;
		buildtree(1, n, t, root);
		//后序输出
		postorder(root);

		//打印结果
		for (int i = 1; i < k; i++) printf("%d %c", post[i], i == k - 1 ? '\n' : ' ');
		remove_tree(root);//释放申请的内存空间
	}
	system("pause");
	return 0;
}

运行结果

在这里插入图片描述

同理,已知中序和后序,输出先序

源码

#include<iostream>
using namespace std;
const int N = 1024;
int pre[N], in[N], post[N];  
int k = 1;
//创建树的结构体
struct node {
	int value;
	node* left, * right;
	node(int value=0, node* left=NULL,node* right=NULL ):value(value),left(left),right(right){}//构造函数
};

//创建树
void buildtree(int left, int right, int &t, node* &root) {
	int flag = -1;
	for (int i = left; i <= right; i++) {
		if (in[i] == post[t]) {
			flag = i;
			break;
		}
	}
	if (flag == -1) {
		return;
	}
	t--;
	root = new node(in[flag]); //堆山申请结点
	if (flag < right)buildtree(flag + 1, right, t, root->right);
	if (flag > left) buildtree(left, flag - 1, t, root->left);  //基于中序数据,分为左右子树
}

//先序输出
void preorder(node* root) {
	if (!root) {
		return;
	}
	else {
		pre[k++] = root->value;
		preorder(root->left);
		preorder(root->right);
	}	
}

//释放内存
void remove_tree(node* root) {
	if (!root) return;
	else {
		remove_tree(root->left);
		remove_tree(root->right);
		delete(root);
	}
}
int main() {
	int n;
	cout << "输入结点个数:";
	while (scanf_s("%d", &n)) {
		cout << "输入中序数据:";
		for (int i = 1; i <= n; i++) scanf_s("%d", &in[i]);
		cout << "输入后序数据:";
		for (int i = 1; i <= n; i++) scanf_s("%d", &post[i]);

		int t = n;
		node* root;
		//创建树
		buildtree(1, n, n, root);
		//先序输出
		preorder(root);
		//打印先序数据
		for (int i = 1; i < k; i++) printf("%d %c", pre[i], i == k - 1 ? '\n' : ' ');
		//释放内存空间
		remove_tree(root);
	}
	system("pause");
	return 0;
}

运行结果

在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1. 什么是二叉树? 二叉树是一种树形结构,其中每个节点最多有两个子节点。一个节点的左子节点比该节点小,右子节点比该节点大。二叉树通常用于搜索和排序。 2. 二叉树的遍历方法有哪些? 二叉树的遍历方法包括前序遍历、中序遍历和后序遍历。前序遍历是从根节点开始遍历,先访问根节点,再访问左子树,最后访问右子树。中序遍历是从根节点开始遍历,先访问左子树,再访问根节点,最后访问右子树。后序遍历是从根节点开始遍历,先访问左子树,再访问右子树,最后访问根节点。 3. 二叉树的查找方法有哪些? 二叉树的查找方法包括递归查找和非递归查找。递归查找是从根节点开始查找,如果当前节点的值等于要查找的值,则返回当前节点。如果要查找的值比当前节点小,则继续在左子树中查找;如果要查找的值比当前节点大,则继续在右子树中查找。非递归查找可以使用栈或队列实现,从根节点开始,每次将当前节点的左右子节点入栈/队列,直到找到要查找的值或者栈/队列为空。 4. 二叉树的插入与删除操作如何实现? 二叉树的插入操作是将要插入的节点与当前节点的值行比较,如果小于当前节点的值,则继续在左子树中插入;如果大于当前节点的值,则继续在右子树中插入。当找到一个空节点时,就将要插入的节点作为该空节点的子节点。删除操作需要分为三种情况:删除叶子节点、删除只有一个子节点的节点和删除有两个子节点的节点。删除叶子节点很简单,只需要将其父节点的对应子节点置为空即可。删除只有一个子节点的节点,需要将其子节点替换为该节点的位置。删除有两个子节点的节点,则可以找到该节点的后继节点(即右子树中最小的节点),将其替换为该节点,然后删除后继节点。 5. 什么是平衡二叉树? 平衡二叉树是一种特殊的二叉树,它保证左右子树的高度差不超过1。这种平衡可以确保二叉树的查找、插入和删除操作的时间复杂度都是O(logn)。常见的平衡二叉树包括红黑树和AVL树。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jacky~~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值