计蒜客 - A1638合并数字(栈队列维护降低复杂度)

LINK
蒜头君得到了 n 个数,他想对这些数进行下面这样的操作,选出最左边的相邻的差的绝对值为 1 的两个数,只保留较小的数,删去较大的数,直到没有两个相邻的差的绝对值为 1的数,问最多可以进行多少次这样的操作?

输入格式
输入第一行为一个整数 n(1≤n≤10^5)
,表示数字的总数第二行为 n 个整数 x1,x2,…,xn(0≤xi≤10^9), ,表示这些数。
输出格式
输出一行,为一个整数,表示蒜头君最多可以进行多少次这样的操作。
Sample Input
4
1 2 0 1
Sample Output
3
错误代码:

#include<stdio.h>
int a[100010];
int main()
{
	int n,i,f,ans,m,j;
	scanf("%d",&n);
	 m=n; 
	for(i=1;i<=n;i++)
	scanf("%d",&a[i]);
	f=1;
	ans=0;
	a[0]=-100;
	for(i=f;i<=n-1;i++)
	{
		if(a[i]-a[i+1]==1) 
		{
			ans++;
			for(j=i;j<=n-1;j++)
			a[j]=a[j+1];
			n--;
			i=i-2;
		}
		else if(a[i]-a[i+1]==-1)
		{
			ans++;
			for(j=i+1;j<=n-1;j++)
			{
				a[j]=a[j+1];
			}
			n--;
			i--; 	 
		}	
	}
	printf("%d\n",ans);
}

AC代码:

#include<stdio.h>
#include<string.h>
int a[110000],b[110000];
int main()
{
	int n,i,k;
	scanf("%d",&n);
	for(i=1;i<=n;i++)
	scanf("%d",&a[i]);
	k=0;
	for(i=1;i<=n;i++)
	{
		b[++k]=a[i];
		while(k>1)
		{
			if(b[k]-b[k-1]==1)
			{
				k--;
			}
			else if(b[k]-b[k-1]==-1)
			{
				b[k-1]=b[k];
				k--;
			}
			else break;
		}
	}
	printf("%d",n-k);
}

用栈来维护每次合并完的数,每入栈一个数以后栈顶和次栈顶比较,如果可以合并就合并为新的栈顶,并且再次与次栈顶比较直至无法合并,在合并过程中统计次数即可。
b数组是用来临时存放一波数,然后判断它是否可以按规则不被消除,
如果和相邻的数可以呆在一起,就存起来,后面加入新的数可能会被消除。如 3 3 3 3 2
这样写复杂度最高为O(n),远远低于双重for循环

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值