LINK
蒜头君得到了 n 个数,他想对这些数进行下面这样的操作,选出最左边的相邻的差的绝对值为 1 的两个数,只保留较小的数,删去较大的数,直到没有两个相邻的差的绝对值为 1的数,问最多可以进行多少次这样的操作?
输入格式
输入第一行为一个整数 n(1≤n≤10^5)
,表示数字的总数第二行为 n 个整数 x1,x2,…,xn(0≤xi≤10^9), ,表示这些数。
输出格式
输出一行,为一个整数,表示蒜头君最多可以进行多少次这样的操作。
Sample Input
4
1 2 0 1
Sample Output
3
错误代码:
#include<stdio.h>
int a[100010];
int main()
{
int n,i,f,ans,m,j;
scanf("%d",&n);
m=n;
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
f=1;
ans=0;
a[0]=-100;
for(i=f;i<=n-1;i++)
{
if(a[i]-a[i+1]==1)
{
ans++;
for(j=i;j<=n-1;j++)
a[j]=a[j+1];
n--;
i=i-2;
}
else if(a[i]-a[i+1]==-1)
{
ans++;
for(j=i+1;j<=n-1;j++)
{
a[j]=a[j+1];
}
n--;
i--;
}
}
printf("%d\n",ans);
}
AC代码:
#include<stdio.h>
#include<string.h>
int a[110000],b[110000];
int main()
{
int n,i,k;
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
k=0;
for(i=1;i<=n;i++)
{
b[++k]=a[i];
while(k>1)
{
if(b[k]-b[k-1]==1)
{
k--;
}
else if(b[k]-b[k-1]==-1)
{
b[k-1]=b[k];
k--;
}
else break;
}
}
printf("%d",n-k);
}
用栈来维护每次合并完的数,每入栈一个数以后栈顶和次栈顶比较,如果可以合并就合并为新的栈顶,并且再次与次栈顶比较直至无法合并,在合并过程中统计次数即可。
b数组是用来临时存放一波数,然后判断它是否可以按规则不被消除,
如果和相邻的数可以呆在一起,就存起来,后面加入新的数可能会被消除。如 3 3 3 3 2
这样写复杂度最高为O(n),远远低于双重for循环