LibreOJ - 10003加工生产调度(贪心)

这篇博客探讨了一道经典问题,即如何通过优化加工顺序来最小化产品在两个车间的总加工时间。关键在于优先处理A车间加工时间短的产品,而将B车间加工时间短的产品放在后面。通过AC代码展示了解决方案,该代码首先根据加工时间对产品排序,然后构造一种顺序以达到最短总时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LINK
题目描述
某工厂收到了 n 个产品的订单,这 n 个产品分别在 A、B 两个车间加工,并且必须先在 A 车间加工后才可以到 B 车间加工。

某个产品 i 在 A,B 两车间加工的时间分别为 Ai,Bi。怎样安排这 n 个产品的加工顺序,才能使总的加工时间最短。

这里所说的加工时间是指:从开始加工第一个产品到最后所有的产品都已在 A,B 两车间加工完毕的时间。

输入格式
第一行仅—个数据 n ,表示产品的数量;

接下来 n 个数据是表示这 n 个产品在 A 车间加工各自所要的时间;

最后的 n 个数据是表示这 n 个产品在 B 车间加工各自所要的时间。

输出格式
第一行一个数据,表示最少的加工时间;

第二行是一种最小加工时间的加工顺序。

样例
Input Output
5
3 5 8 7 10
6 2 1 4 9
34
1 5 4 2 3
数据范围与提示
对于 100%的数据, 0<n<1000,1≤Ai,Bi≤350。


  • 分析: 这是一道很经典的题,只需要记住这种题型的一个结论:
    A机器上加工时间短的任务应优先,而在B机器上加工时间短的任务应该排在后面。

在这里插入图片描述
这样可以使部分任务同时完成,缩短时间;
AC代码:

#include<stdio.h>
#include<algorithm>
using namespace std;
struct node
{
	int x,id;
}l[1010];
int cmp(node x,node y)
{
	return x.x<y.x;
}
int main()
{
	int n,i,k1,k2,ans=0,sum1=0;
	int a[1010],b[1010],c[1010];
	scanf("%d",&n);
	for(i=1;i<=n;i++)
	scanf("%d",&a[i]);
	for(i=1;i<=n;i++)
	scanf("%d",&b[i]);
	for(i=1;i<=n;i++)
	{
		l[i].id=i;
		l[i].x=min(a[i],b[i]);
	}
	sort(l+1,l+1+n,cmp);
	k1=1;
	k2=n;
	for(i=1;i<=n;i++)//按照最小数值去排序 
	{
		if(l[i].x==a[l[i].id])
			c[k1++]=l[i].id;
		else 
			c[k2--]=l[i].id;
	}
	for(i=1;i<=n;i++)
	{
		//这里求总时间,如果下一零件a厂比现在零件的b厂加工时间少,可以同时完成; 
		sum1+=a[c[i]];  	
		if(sum1>ans)
		ans=sum1;
		ans+=b[c[i]];
	}
	printf("%d\n",ans);
	printf("%d",c[1]);
	for(i=2;i<=n;i++)
	printf(" %d",c[i]);
	printf("\n");
}
//代码依旧用结构体选取两个时间中的一个,并存下序号; 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值