自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 论文阅读:PAD-Net: An Efficient Framework for Dynamic Networks

动态网络,例如动态卷积(DY-Conv)和专家混合(MoE),已经被广泛地探索,因为它们可以在可接受的计算成本下显著地。实现动态网络的通常做法是将给定的静态层转换为完全动态层,其中所有参数都是动态的(至少在单个层内),并且随输入而变化。然而,这种。我们工作的主要贡献是挑战动态网络的基本概念,提出了一个,即。在此基础上,进一步。我们的方法得到了两种典型的先进动态结构(DYConv和MoE)在图像分类和GLUE基准上的大规模实验的全面支持。

2023-07-04 15:54:35 305

原创 论文阅读:Trustworthy Long-Tailed Classification CVPR2022

首先提出了目前集成学习处理长尾问题的两个限制:首先,对于failure-sensitive applications预测是不可信的(尾部的预测不够准确);其次,对于简单样本使用多专家预测是冗余的。基于此,作者提出了一种可信长尾分类(TLC)方法,在多专家框架下联合进行分类和不确定性评估,以识别硬样本。该方法首先会获取每一位专家网络的证据和基于证据的不确定度(EvU),然后会基于Dempster-Shafer Evidence Theory (DST)理论融合这些证据和不确定度。

2023-05-10 20:20:31 415 1

原创 论文阅读:Long-Tailed Visual Recognition via Self-Heterogeneous Integration withKnowledge Excavation

真实世界的数据经常显示出长尾分布,普通的深度模型倾向于严重偏向大多数类。为了解决这个问题,最先进的方法通常采用混合专家(MoE)来关注长尾分布的不同部分。这些方法的专家具有。为此,我们提出了一种新的基于moe的知识挖掘自异构集成方法。我们首先提出了(depth - wise Knowledge Fusion, DKF)方法,将每个专家在一个网络中不同浅部和深度部之间的特征进行融合,使得专家在表示方面更加多样化。在DKF的基础上,我们进一步提出了。

2023-05-10 19:34:29 945 1

原创 报错处理:pytorch load的模型参数与创建模型不匹配的问题

创建的网络模型与导入的预训练参数在最后一层的全连接层是不匹配的,创建的模型为六分类任务,然后导入的参数是21841分类任务。将导入模型的最后一层参数去掉,可以通提供print输出参数的的内容。来查看最后一层的名称。我的最后一层名为:head。

2022-11-09 15:01:40 1193

原创 论文阅读:A ConvNet for the 2020s

SWIN Transformer重新引入了几个,使得Transformer实际上可以作为通用的视觉主干,并在各种视觉任务上表现出卓越的性能。然而,这种混合方法的有效性仍然很大程度上归功于变压器的内在优势,而不是卷积的内在归纳偏差。在这项工作中,我们重新审视了设计空间,并测试了纯ConvNet所能达到的极限。我们逐渐将一个标准的Resnet“现代化”到vision Transformer的设计中,并发现了几个。

2022-11-08 10:45:15 731

原创 论文阅读:MIL-VT: Multiple Instance LearningEnhanced Vision Transformer for FundusImage Classification

本文尝试将用于视网膜疾病分类任务,通过在大型眼底图像数据库上预先训练变换器模型,然后对下游的视网膜疾病分类任务进行微调。此外,,它可以方便地以即插即用的方式附加到视觉转换器上,有效地提高了下游眼底图像分类任务的模型性能。

2022-11-04 13:04:37 1425

原创 论文阅读:Task Discrepancy Maximization for Fine-grained Few-Shot Classification

实现细粒度分类

2022-10-25 15:50:44 1097 1

原创 论文阅读:SOS: Selective Objective Switch for Rapid Immunofluorescence Whole SlideImage Classification

提出了一种基于对缩小尺度的WSIs预测的置信度的选择性使用高分辨率处理的方法(SOS),只有在处理不确定情况是才会使用高分辨率进行处理。减少冗余操作。

2022-10-24 15:33:22 996 2

原创 论文阅读:Multi-scale Domain-adversarial Multiple-instance CNN for Cancer Subtype Classification with ……

对于论文的一些总结

2022-10-23 18:03:35 1209 2

原创 pytorch基础实战——FashionMNIST时装分类

基于pytorch实现简单的分类任务。

2022-08-23 14:31:11 543

原创 深入浅出PyTorch 第五章:PyTorch模型定义

yTorch模型定义应包括两个主要部分:各个部分的初始化(__init__);数据流向定义(forward)基于nn.Module,我们可以通过Sequential,ModuleList和ModuleDict三种方式定义PyTorch模型。

2022-08-20 20:58:04 354

原创 深入浅出pytorch第三章——pytorch主要组成模块

pytorch主要组成模块。

2022-08-19 11:03:27 191

原创 深入浅出PyTorch 第一、二章:PyTorch安装与基础知识(笔记整理,个人自用)

关于pytorch的基础知识记录

2022-08-16 14:56:03 370

原创 Unity中Oculus integration的简单使用

一、导入专用摄像头在Oculus文件中搜索OVRPlayerController并添加到场景中。此时即可实现头盔的控制(视野的转动)。二、导入双手将下图中的左图中的两个预制体导入到OVRPlayerController的左右手锚中,效果如右图所示。...

2022-01-12 15:17:03 4966 3

原创 使用Unity创建oculus quest 简易场景1(实现头盔和操作杆的控制)

本文主要讲述利用Unity的oculus integration 插件来实现头盔和操作感的控制。本文主要分为以下几个部分。一、创建新项目二、切换平台,进行玩家设置三、导入oculus integration 插件四、创建场景并打包apk五、效果展示接下来我们按步骤开始操作。一、创建新项目模板直接选择3D就可以二、切换平台,进行玩家设置点击菜单栏的文件->生成设置设置如图所示,在玩家设置中,下载XR管理插件,并点击oculus选项三、导入oc.

2021-12-08 22:55:39 3752 2

原创 Unity报错:InvalidOperationException:You are tring to read lnput using the UnityEngine. ……的解决办法。

如图出现的报错,解决方案如下:在Unity中的玩家设置中,将active lnput handling选项设置为Both。如下图所示:即可解决该问题。

2021-12-08 19:24:43 12245 8

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除