Abstract
SWIN Transformer重新引入了几个ConvNet priors,使得Transformer实际上可以作为通用的视觉主干,并在各种视觉任务上表现出卓越的性能。 然而,这种混合方法的有效性仍然很大程度上归功于变压器的内在优势,而不是卷积的内在归纳偏差。 在这项工作中,我们重新审视了设计空间,并测试了纯ConvNet所能达到的极限。 我们逐渐将一个标准的Resnet“现代化”到vision Transformer的设计中,并发现了几个导致性能差异的关键部件。
Introduction
回顾卷积网络的历史
卷积的运算方式适合进行处理视觉任务
Transformer异军突起并进军视觉领域,但是单一的ViT处理图像任务中存在问题(复杂度高)
分层Transformer采用一种混合方法来弥补这一差距。 例如,“滑动窗口”策略被重新引入Transformer,使它们的行为更类似于ConvNets。SWIN Transformer的成功和迅速采用也揭示了一件事:卷积的本质并不是变得无关紧要
这种观点下,许多用于计算机视觉的Transformer的进步都旨在带回卷积。 然而,这些尝试是有代价的:滑动窗口自关注的幼稚实现可能是昂贵的[55]; 使用先进的方法,如循环移位[45],速度可以优化,但系统在设计上变得更加复杂。 另一方面,几乎具有讽刺意味的是,一个ConvNet已经满足了许多想要的属性,尽管是以一种直接、不加修饰的方式。 ConvNets似乎失去动力的唯一原因是(分层)Transformer在许多视觉任务中超过了它们,性能差异通常归因于变压器优越的缩放行为,多头自注意是关键组成部分。
ConvNets和SWIN Transformer既有区别又有相似之处:它们都具有相似的感应偏差,但在训练过程和宏/微观层次的体系结构设计上存在显著差异。
我们首先使用经过改进的过程训练的标准Resnet(例如Resnet50)。 我们逐渐将架构“现代化”到构建一个层次化的视觉Transformer(例如SWIN-T)。 我们的探索是由一个关键问题指导的:Transformer的设计决策如何影响ConvNets的性能? 我们发现了几个导致性能差异的关键组件。 因此,我们提出了一个纯ConvNets族,称为ConvNext。
Modernizing a ConvNet: a Roadmap
在本节中,我们提供了一个从ResNet到ConvNet的轨迹,它类似于Transformer。 我们考虑了两种模型尺寸,一种是Resnet-50/SWIN-T模型,其Flop值约为4.5×109;另一种是Resnet-200/SWIN-B模型,其Flop值约为15.0×109。 为了简单起见,我们将用RESNET-50/SWIN-T复杂度模型给出结果。 对于高容量模型的结论是一致的,结果可以在附录C中找到。
在高层次上,我们的探索是为了研究和遵循SWIN-Transformer的不同层次的设计,同时保持网络作为标准ConvNet的简单性。 我们探索的路线图如下。 我们的起点是Resnet-50型号。 我们首先用类似于训练视觉Transformer的训练技术来训练它,并获得了比最初的Resnet-50更好的结果。 这将是我们的基线。 然后,我们研究了一系列的设计决策,我们总结为:1)宏观设计,2)重新设计,3)反瓶颈,4)大内核大小,5)不同层次的微观设计。 在图2中,我们展示了“网络现代化”的每一步所能实现的过程和结果。 由于网络复杂度与最终性能密切相关,所以在探索的过程中,FLOP大致被控制,尽管在中间阶段,FLOP可能高于或低于参考模型。 所有模型都在ImageNet-1K上进行训练和评估。
Training Techniques
首先不对ResNet网络结构本身进行改进,只对训练的策略进行一个改进:
1. 从90epochs到300epochs
2. 使用AdamW进行优化
3. 使用了Mixup,Cutmix,RandAugment,RandomErasing等数据增强策略
由结果得到,通过这些操作,就可以将性能从76.1%增加到了78.8%。
这意味着传统的Convnets和视觉变换器之间的性能差异的很大一部分可能是由于训练技术。
改进措施
框架
Related Work
略
Conclusions
在21世纪20年代,vision Transformer,尤其是像SWIN Transformer,开始取代ConvNets,成为通用视觉骨干的首选。 人们普遍认为,vision Transformer比ConvNets更准确、更有效、更可扩展。 我们提出了ConvNexts,这是一个纯ConvNet模型,可以在多种计算机视觉基准上与最先进的分层视觉变换器竞争,同时保留了标准ConvNets的简单性和效率。 在某些方面,我们的观察令人惊讶,而我们的ConvNext模型本身并不完全是新的--在过去的十年里,许多设计选择都被单独检查过,但不是集体检查。 我们希望这项研究报告的新结果将挑战几个广泛持有的观点,并促使人们重新思考卷积在计算机视觉中的重要性。