论文阅读:Task Discrepancy Maximization for Fine-grained Few-Shot Classification

Abstract

        识别像眼睛和喙这样的区分细节对于区分细粒度类很重要,因为它们有相似的整体外观。 在这方面,我们引入了任务差异最大化(TDM),这是一个用于细粒度少镜头分类的简单模块。 我们的目标是通过突出显示编码类别不同信息的通道来定位类别区分区域。 具体来说,TDM基于支持关注模块(SAM)和查询关注模块(QAM)两个新的组件来学习特定于任务的信道权重。 SAM产生支持权重来表示每个类的信道区分能力。 然而,由于SAM基本上只基于标记的支持集,它可能容易偏向于这种支持集。 因此,我们提出了QAM,它通过产生一个查询权重来补充SAM,该权重为给定查询图像的对象相关通道赋予更多的权重。 通过组合这两个权重,定义了一个基于类的特定于任务的通道权重。 然后将权值应用于任务自适应特征映射,更侧重于区分细节。 我们的实验验证了TDM在细粒度少镜头分类中的有效性及其与现有方法的互补优势。

        总结:提出一种模块(TDM)来提高细粒度识别的准确度。

Introduction

        少镜头分类的必要性

        基于度量的学习流是少镜头分类的一个很有前途的方向。

        应对少镜头分类的现有的策略。

        现有的策略不适用于细粒度的分类。

        TDM,一种通过加权每个类别的通道来定位鉴别区域的模块。 TDM突出了代表区分区域的信道,并基于信道的分类权值抑制了其它信道的贡献。 具体来说,TDM由支持关注模块(SAM)和查询关注模块(QAM)两部分组成。 给定支持集,SAM输出每个类的支持权重,该权重在鉴别信道上呈现高激活度。 另一方面,向QAM提供查询集以产生每个实例的查询权重。 查询权重是突出显示与对象相关的通道。 为了推断这些权重,考虑了每个特征映射与平均信道集合特征之间的关系。 注意,信道池平均特征图具有如图中描述的对象的空间信息。因此,当通道与空间平均特征映射相似时,通道极有可能表示对象。 通过组合两个权重,最终定义了一个特定于任务的权重。并用该权重产生任务自适应的特征映射。

Related Works

Few-Shot Classification

        少镜头分类的方法可分为两大主流:基于优化的方法和基于度量的方法。

        基于度量的方法通过使用预定义的或在线训练的度量来学习深度表示。

        基于度量的方法通常学习减少类中实例之间的距离,我们有同样的目标,因为TDM是它们的一个模块。 然而,TDM技术通过动态地识别有区别的信道,使得基于自适应信道权值的距离计算成为可能,而现有技术对所有信道都是一视同仁的。

Feature Alignment

        特征对齐分为空间对齐和通道对齐,不同于考虑支持图像和查询图像之间成对关系的现有方法不同,TDM考虑整个任务来处理特征对齐。

Method

        给定由支持和查询实例组成的事件,特征提取器首先计算特征映射。 然而,由于特征提取器被训练为寻找用于分类基类的鉴别特征,因此特征映射并不是对每一集都是最优的,TDM通过利用表示特定任务的信道区分能力的特定任务权值来转换特征映射。 因此,我们的目标是通过将原始特征映射细化为任务自适应特征映射来聚焦于可区分的细节。

        图3。方法概述。 TDM由两个子模块组成。 每个子模块获取特征映射F并生成信道权重W。 支持关注模块利用支持实例的特征映射作为输入,并为每个类找到鉴别通道。 然后,它为第i个类别生成支持权重Wsi,其中权重在这些通道中具有较高的值。 另一方面,查询关注模块获得查询实例,并发现查询的对象相关通道。 然后,来自查询关注模块的查询权重WQ强调具有关于该查询的对象信息的特定通道。 这些来自两个子模块的权重通过线性组合被集成,以定义每个第i个类别的任务权重WT i。 最后,将任务权重与原始特征映射相乘,得到集中在识别区域上的任务自适应特征映射。 

        设置两个数据集,元训练数据集Dbase和元测试数据集Dnovel,Cbase和Cnovel分别代表基类和novel类。训练集和测试集是由episodes组成,而每一个episode由随机抽样的n类组成,且每一类中包含k个标记图像(这就是超参数中 n way k shot 的由来)。标记图像组成支持集,未标记图像组成查询集(训练集和测试集)————应用了元学习的策略。

Experiments……

        略

        

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
### 回答1: 最大分类器差异是一种用于无监督域自适应的方法,它通过最大化源域和目标域之间的分类器差异来提高模型的泛化能力。该方法通过在源域和目标域之间构建一个共享的特征空间,并使用最大均值差异来对齐两个域之间的特征分布。最大分类器差异方法已经在图像分类、目标检测和语音识别等领域得到了广泛的应用。 ### 回答2: 最大分类器差异(maximum classifier discrepancy)是一种用于无监督领域适应的分类器度量方法。在无监督领域适应中,在源域和目标域之间存在着分布差异,因此我们无法直接利用源域的标记样本进行训练。而最大分类器差异方法尝试通过最小化源域和目标域之间的分类性能差异来进行域适应,从而提高在目标域上的分类性能。 在最大分类器差异方法中,我们使用分别使用源域和目标域的数据来训练两个分类器。然后,我们用两个分类器来分别对源域和目标域的数据进行分类,并计算两个分类器之间的差异。这个差异被称为最大分类器差异。最大分类器差异越小,说明源域和目标域之间的分类性能差异越小。 最大分类器差异方法的优点在于它不需要任何标记信息,因此可以更好地解决无监督领域适应问题。此外,最大分类器差异方法可以应用于各种不同类型的数据,包括图像、语音等等。 最大分类器差异方法的一个缺点是,它仅仅关注了源域和目标域之间的分类性能差异,而没有考虑其他因素。另外,最大分类器差异方法的计算复杂度较高,需要对数据进行多次训练和分类,在实际应用中可能存在一定的困难。 ### 回答3: 最大分类器差异(Maximum Classifier Discrepancy,MCD)是一种用于非监督式域适应(Unsupervised Domain Adaptation,UDA)的优化方法,用于在源域和目标域之间的差异中减少域偏移和增加分类器的鲁棒性。MCD在同类和异类样本之间寻找主要差异,并通过对样本特征进行最大投影差异来实现最佳分离。 在非监督式域适应中,我们没有目标标签可用,因此不能使用传统的监督方法进行域适应。MCD通过最大化分类器在源域和目标域之间的差异,来找到两个领域之间的分界线,并提高分类器的泛化能力。具体来说,MCD使用最大平均散度(Maximum Mean Discrepancy,MMD)来测量源域和目标域之间的相似性和差异性,即通过学习使得源域和目标域的特征分布差异最大化的映射函数,来尽可能减少领域之间的差异。 MCD还可以用于不同类型的域适应问题,包括图像领域、语音领域和自然语言处理领域。在图像领域中,MCD可以用于目标域具有不同光照、角度和尺度情况的情况下的图像分类。在语音领域和自然语言处理领域中,MCD可以帮助训练具有更好鲁棒性的语音识别模型和文本分类模型。 总之,MCD是一种用于非监督式域适应的有效工具,它能够在源域和目标域之间的差异中找到主要的差异,并提高分类器的泛化能力。同时,MCD也是一个可扩展的方法,可以应用于不同领域和问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小强2021

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值