本文将从Model I/O的本质、Model I/O的原理、Model I/O的应用三个方面进行解析。
一、Model I/O的本质
1. ModelI/O是什么?
在LangChain中,模型输入/输出(Model I/O)是指与 LLM 进行交互的组件,它弥合了原始输入数据和结构化输出之间的鸿沟。
- 格式化(Format):负责格式化输入数据
- 预测(Predict):从模型获取预测结果
- 解析(Parse):解析输出为结构化格式
Model I/O由几个部分组成。
- Prompts:Prompts(提示)是预定义的文本模板,用于指导语言模型生成特定类型的响应。
- LLMs:LLMs(大型语言模型)是一种接受文本字符串作为输入并返回文本字符串作为输出的模型。
- ChatModels:ChatModels(聊天模型)是一种接受消息列表作为输入并返回单条消息作为输出的模型。
- Output Parsers:Output parsers(输出解析器)负责将LLMs和ChatModels的输出转换为更结构化的数据。
2. Model I/O能干什么?
封装模型API和处理输入输出数据,实现了模型的顺畅交互,使得用户可以方便地利用模型完成各种任务。
- 模型调用:通过封装好的API,Model I/O使得用户可以方便地调用不同的模型,如大型语言模型(LLM)或聊天模型(ChatModel),来完成各种任务,如文本生成、问答、翻译等。
- 输入封装:对于模型的输入,Model I/O提供了封装机制,可以处理各种类型的数据,如文本字符串、图像数据等,并将其转换为模型所需的特定格式。这包括数据的清洗、预处理和特征提取等步骤。
- 输出解析:对于模型的输出,Model I/O同样提供了封装机制来解析和处理结果。这可能包括将模型的输出转换为易于理解的格式、提取关键信息、进行后处理等步骤。
二、Model I/O的原理
1. Model I/O的工作流程:
格式化原始输入数据,将其传递给模型以获取预测结果,并将输出解析为结构化格式,以供下游组件或应用程序使用。
Model I/O流程包含以下三个核心步骤:
- 格式化(Format):原始数据被清洗、标记化、编码,并根据特定任务需求构建提示模板,以转换成适合语言模型处理的格式。
- 预测(Predict):格式化后的数据被直接送入语言模型,模型基于其内部知识和训练数据生成文本输出。
- 解析(Parse):语言模型的文本输出被提取特定信息、转换成不同数据类型,并经过必要的后处理,以满足下游组件或应用程序的结构化需求。
2. Model I/O的核心组件:
包括用于接收和生成文本的语言模型、指导输入格式的提示模板、筛选训练数据的示例选择器,以及解析模型输出的输出解析器。
1)语言模型 (Language Models):
- LLM: 大型语言模型,接收文本字符串作为输入,并返回相应的文本字符串作为输出。
- ChatModel: 聊天模型,是语言模型的一种变体。接收聊天消息列表作为输入,并返回聊天消息作为输出。
2)提示模板 (Prompt Templates):
- PromptTemplate: 用于生成字符串提示。
- ChatPromptTemplate: 用于生成聊天消息列表的提示。
3)示例选择器(Example Selectors):
-
训练新模型: Example Selectors从数据集中筛选代表性的示例来训练新模型,确保其学习高质量、多样化的数据,提升学习效果和泛化能力。
-
调优现有模型: 利用Example Selectors提供的新示例,对现有模型进行持续训练和调优,逐步改进其在特定任务上的表现,提高准确性和效率。
4)输出解析器(Output Parsers):
- Get format instructions: 返回一个字符串,其中包含要求语言模型应该返回什么格式内容的提示词。
- Parse: 将模型返回的内容,解析为目标格式。
三、Model I/O的应用
1. LLM(大语言模型):
简化了自定义LLM的开发过程,实现了LLM响应的缓存管理以降低成本和加速应用,支持LLM流式传输响应以提升效率。
问题一:如何编写自定义 LLM?
问题二:如何缓存 LLM 响应?
- 缓存目的: LangChain为LLM提供缓存层,可减少向LLM提供商的API调用,从而节省成本并加速应用。
- 缓存方式: 支持内存缓存和SQLite缓存两种方式,前者访问速度快但数据易丢失,后者数据持久但访问稍慢。
问题三:如何从 LLM 流式传输响应?
- 实现 Runnable 接口:ainvoke, batch, abatch, stream, astream。
- 返回一个 Iterator: 它只包含一个值,即由底层
LLM
提供者返回的最终结果。
问题四:如何跟踪 LLM 调用中的Token使用情况?
- 跟踪目的: 对于API调用,尤其是使用像OpenAI这样的服务时,跟踪Token的使用情况是管理成本和了解应用程序资源消耗的重要方面。
二、ChatModel(对话模型):
实现缓存层减少API调用以降低成本、提升响应速度,同时提供简洁语法和转换器简化模型管理,支持流式传输响应以优化用户体验。
问题一:如何缓存 ChatModel 响应?
- 缓存目的: LangChain为ChatModel提供缓存层,可减少向LLM提供商的API调用,从而节省成本并加速应用。
- 缓存方式: 支持内存缓存和SQLite缓存两种方式,前者访问速度快但数据易丢失,后者数据持久但访问稍慢。
问题二:如何使用支持函数调用的ChatModel?
- 将函数简单绑定到模型的语法:LangChain允许您使用简单的语法轻松地将函数绑定到特定的模型,从而更轻松地在应用程序中管理多个模型。
- 将对象格式化为预期函数模式的转换器:LangChain提供了转换器,可以将各种类型的对象格式化为被调用函数所期望的输入结构。
问题三:如何从 ChatModel 流式传输响应?
- 实现 Runnable 接口:ainvoke, batch, abatch, stream, astream。
- 返回一个 Iterator: 它只包含一个值,即由底层
ChatModel
提供者返回的最终结果。
问题四:如何跟踪 ChatModel 调用中的Token使用情况?
- 跟踪目的: 对于API调用,尤其是使用像OpenAI这样的服务时,跟踪Token的使用情况是管理成本和了解应用程序资源消耗的重要方面。
如何学习大模型?
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
5. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【
保证100%免费
】