大模型论文 | 一篇搞懂!最新11种新型 RAG 类型

随着大语言模型(LLM)的持续演进,RAG(检索增强生成)技术也在飞速发展。从早期的简单文档检索,到如今与 Agent、多模态、图结构等深度结合,RAG 正逐渐变得更智能、更具推理能力。

今天,我们整理了 11 种最新的 RAG 类型,从协同式、因果式、到图结构增强,为你打开通往下一代智能问答系统的大门。

一、任务规划 + RAG:InstructRAG

InstructRAG 构建了一个基于 图结构的多智能体系统,包括:

  • RL Agent:探索更广泛的任务空间
  • Meta-Learning Agent:增强泛化能力

让 RAG 更加适合复杂任务规划。

论文:https://huggingface.co/papers/2504.13032

二、协同智能:CoRAG

在多个客户端之间进行协作检索与生成,共享知识库,实现联邦学习场景下的问答增强。

论文:https://huggingface.co/papers/2504.01883

三、推理控制:ReaRAG

通过 Thought → Action → Observation 循环,控制每一步是否需要检索,减少无意义的推理,提升准确率。

论文:https://huggingface.co/papers/2503.21729

四、搜索加持:MCTS-RAG

结合 蒙特卡洛树搜索(MCTS),即使是小模型也能处理复杂、知识密集的任务。

论文: https://huggingface.co/papers/2503.20757

五、问题类型识别:Typed-RAG

识别问题类型(比如比较、经验分享、辩论),将复杂问题 自动拆分成子任务,再逐步回答,尤其适用于非事实型问答。

论文:https://huggingface.co/papers/2503.15879

六、辩论式多智能体:MADAM-RAG

多个模型 围绕同一问题展开辩论,通过多轮交互提出各自观点,最终由汇总模块 **去噪并生成权威答案。

论文:https://huggingface.co/papers/2504.13079

七、多模态 & 多智能体:HM-RAG

三个智能体协同工作:

  • Query Agent:分解问题
  • Retrieval Agent:从文本/图/网页中检索
  • Synthesis Agent:整合与精炼答案

论文:https://huggingface.co/papers/2504.12330

八、因果图加持:CDF-RAG

基于因果图进行多跳推理,支持动态反馈机制,确保生成内容沿着“因果路径”推理展开,提升解释性和准确性。

论文:https://huggingface.co/papers/2504.12560

九、异构图结构:NodeRAG

采用设计良好的异构图,将图算法与 RAG 无缝集成,在多跳问答中 超越 GraphRAG 与 LightRAG,准确性提升明显。

论文: https://huggingface.co/papers/2504.11544

十、知识粒度分层:HeteRAG

支持多粒度知识表示,检索时使用粗粒度语义块,生成时再细化为精炼知识,配合 自适应提示调优(Prompt Tuning),兼顾性能与效率。

论文:https://huggingface.co/papers/2504.10529

十一、高阶关系建模:Hyper-RAG

基于 超图(Hypergraph),同时捕捉知识之间的双边与多边关系,尤其适用于医疗等高风险领域,减少幻觉,提升精度。

轻量版本还可将检索速度提高 2 倍!

论文:https://huggingface.co/papers/2504.08758

十二、总结 & 展望

新一代 RAG 正在以更智能、更结构化的方式,成为 LLM 在推理、问答、规划领域的“超级大脑”。

如果你是从事大模型应用的开发者、研究者,这些 RAG 的演进路径无疑提供了大量创新灵感。


如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。

在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值