Pandas matplotlib 数据可视化

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

本篇是使用pandas matplotlib,其中穿插了一点numpy的知识,使用这些python库对数据进行数据可视化.

一、pandas是什么?

示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。

二、使用步骤

1.pandas准备数据

代码如下:

subjects=["软件工程","Javaweb","Nosql","Hadoop",'ETL','信息安全','创业']
scores={"张三":np.asarray([97.5,91,87,85,91,75,80]),
        "李四":np.asarray([87.5,87,81,87,95,55,90]),
        "王五":np.asarray([89.5,81,67,85,81,85,75]),
        "李强":np.asarray([87.5,96,77,95,81,75,91]),
        "李华":np.asarray([54.8,61,97,75,76,76,78]),}
# 作为DtaFrame
pdf=pd.DataFrame(scores,subjects)
pdf.to_csv("score_info.csv")
# 转换为csv文件后,会出现score_info的文件,使用,切割,无index
pdc=pd.read_csv("score_info.csv",delimiter=",",index_col=0)
print(pdc)

2.matplotlib 数据可视化--雷达图

代码如下:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt


rcParams['font.family'] = 'SimHei'


# subjects=["软件工程","Javaweb","Nosql","Hadoop",'ETL','信息安全','创业']
# scores={"张三":np.asarray([97.5,91,87,85,91,75,80]),
#         "李四":np.asarray([87.5,87,81,87,95,55,90]),
#         "王五":np.asarray([89.5,81,67,85,81,85,75]),
#         "李强":np.asarray([87.5,96,77,95,81,75,91]),
#         "李华":np.asarray([54.8,61,97,75,76,76,78]),}
pdf=pd.read_csv("score_info.csv",delimiter=",",index_col=0)
# 获取索引并且list转换
index=list(pdf["张三"].index)
# 画板
fig=plt.figure(figsize=(10,6),dpi=80)
# 极坐标格式
ax = fig.add_subplot(111, polar=True)
# 绘制-用实心圆做散点
# concatenate是用来连接数组文件的,连接这个数组的前后,这样在雷达图就可以实现边的连接
x = np.concatenate ((pdf.index, [pdf.index[0]]))
for i in pdf.columns:
        y=np.concatenate((pdf[str(i)].values,[pdf[str(i)].values[0]]))
        ax.plot(x,y, 'o-', linewidth=2)
        ax.fill(x, y, alpha=0.25)
plt.title('成绩雷达图')

# 添加网格线
ax.grid(True)

3.效果图

 


总结

提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。matplotlib同样也能够对数据进行不错的可视化

### 回答1: Pandas 是一个强大的数据分析工具,它可以帮助您读取和处理各种数据格式(如 CSV、Excel、JSON 等)。 Matplotlib 是一个用于绘制图形的库,它可以与 Pandas 配合使用,通过绘制图表来可视化 Pandas 中的数据。 通过使用 PandasMatplotlib,您可以方便地对数据进行分析和可视化。 ### 回答2: PandasMatplotlib是Python编程语言中非常有用的两个库,特别是在数据科学和数据分析中。这两个库都可以方便地处理和可视化数据。 Pandas是一个强大的数据分析库,可用于读取,处理和分析数据。它支持不同类型的数据结构,包括数据帧(DataFrame)和系列(Series)。使用Pandas,我们可以轻松地载入数据集,并进行数据清洗、数据处理和数据分析。常用的数据操作包括筛选、排序、聚合、合并等。 Matplotlib是一个Python绘图库,可用于创建各种静态、动态或交互式的图表和可视化效果。它支持绘制线条图、散点图、饼图、直方图等基本图表类型,并提供了多种自定义选项和功能,以满足不同可视化需求。使用Matplotlib,我们可以简单地绘制出高质量的图表和可视化效果,从而更好地理解数据和探索数据特征。 使用PandasMatplotlib进行可视化,一般需要先载入数据集,并对数据进行清洗和处理,以便后续进行可视化分析。然后根据需要,选择适当的可视化类型,并使用Matplotlib提供的函数和工具绘制出所需的图表。在图表绘制完成后,我们可以使用Matplotlib提供的多种自定义选项和功能调整图表样式和外观,使其更具可读性和直观性。最后,我们可以保存或分享图表和可视化效果,以便更好地展示和交流数据分析结果。 总结来说,PandasMatplotlib是Python编程中非常实用的两个库。使用Pandas可以方便地读取和操作数据集,使用Matplotlib则可以快速绘制出各种图表和可视化效果。掌握这两个库的使用技巧,可帮助我们更好地进行数据分析和探索,从而得出更准确和可靠的结论。 ### 回答3: 为了更好地进行数据分析和呈现,pandas提供了很多功能强大的数据处理和数据结构操作,而matplotlib则是Python中最著名的绘图库之一,通过将pandasmatplotlib结合起来使用,可以极大地提高数据分析和可视化的效率和准确性。以下是Pandas Matplotlib可视化的一些主要内容。 #1. 创建简单的数据可视化 Pandas Series和DataFrame提供了许多内置绘图方法,通过调用这些方法,可以轻松地创建数据可视化图表。例如,可以通过调用pandas.DataFrame.plot()方法,来创建简单的折线图、散点图、柱状图、区域图等常用的图表类型。 #2. 数据预处理与清洗 Pandas提供了很多功能强大的数据预处理和清洗工具,包括数据清洗、数据规整、数据转换等。通过使用这些工具可以更好地准备数据以供可视化使用,这对于正确地理解和分析数据是非常重要的。 #3. 多个子图和复杂图表的创建 PandasMatplotlib支持Subplot、Axes和Figure等用于创建复杂图表的对象和方法。可以使用这些对象来创建多个子图、绘制复杂图形、添加注释和轴标签等。 #4. 可交互的数据可视化 在使用PandasMatplotlib创建的图表中,可以使用交互式可视化工具来导航和探索数据。通过使用一些Python库如Bokeh和Plotly等,可以创建高度交互式和动态的图表和可视化效果。 #5. 高级数据分析和可视化 除了常规的数据可视化图表之外,PandasMatplotlib还支持一些高级的数据分析和可视化技术,例如,时间序列分析、统计分析、数据聚合、可视化编码和机器学习方法等。这些技术可以被用于更好地分析和理解数据,建立高度定制化和交互式的数据可视化应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值