提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
本篇是使用pandas matplotlib,其中穿插了一点numpy的知识,使用这些python库对数据进行数据可视化.
一、pandas是什么?
示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。
二、使用步骤
1.pandas准备数据
代码如下:
subjects=["软件工程","Javaweb","Nosql","Hadoop",'ETL','信息安全','创业'] scores={"张三":np.asarray([97.5,91,87,85,91,75,80]), "李四":np.asarray([87.5,87,81,87,95,55,90]), "王五":np.asarray([89.5,81,67,85,81,85,75]), "李强":np.asarray([87.5,96,77,95,81,75,91]), "李华":np.asarray([54.8,61,97,75,76,76,78]),} # 作为DtaFrame pdf=pd.DataFrame(scores,subjects) pdf.to_csv("score_info.csv") # 转换为csv文件后,会出现score_info的文件,使用,切割,无index pdc=pd.read_csv("score_info.csv",delimiter=",",index_col=0) print(pdc)
2.matplotlib 数据可视化--雷达图
代码如下:
import pandas as pd import numpy as np import matplotlib.pyplot as plt rcParams['font.family'] = 'SimHei' # subjects=["软件工程","Javaweb","Nosql","Hadoop",'ETL','信息安全','创业'] # scores={"张三":np.asarray([97.5,91,87,85,91,75,80]), # "李四":np.asarray([87.5,87,81,87,95,55,90]), # "王五":np.asarray([89.5,81,67,85,81,85,75]), # "李强":np.asarray([87.5,96,77,95,81,75,91]), # "李华":np.asarray([54.8,61,97,75,76,76,78]),} pdf=pd.read_csv("score_info.csv",delimiter=",",index_col=0) # 获取索引并且list转换 index=list(pdf["张三"].index) # 画板 fig=plt.figure(figsize=(10,6),dpi=80) # 极坐标格式 ax = fig.add_subplot(111, polar=True) # 绘制-用实心圆做散点 # concatenate是用来连接数组文件的,连接这个数组的前后,这样在雷达图就可以实现边的连接 x = np.concatenate ((pdf.index, [pdf.index[0]])) for i in pdf.columns: y=np.concatenate((pdf[str(i)].values,[pdf[str(i)].values[0]])) ax.plot(x,y, 'o-', linewidth=2) ax.fill(x, y, alpha=0.25) plt.title('成绩雷达图') # 添加网格线 ax.grid(True)
3.效果图
总结
提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。matplotlib同样也能够对数据进行不错的可视化