归一化差分水体指数(Normalized Difference Water Index,NDWI)

目录

​​一、NDWI是什么?

二、NDWI计算公式


一、NDWI是什么?

NDWI指数是一种遥感指数,用于反映水体和植被分布情况。

二、NDWI计算公式

                ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        NDWI=\frac{Green-NIR}{Green+NIR}

        其中,Green代表绿波段(例如:Landsat 8卫星的绿波段),NIR代表近红外波段(例如:Landsat 8卫星的近红外波段)。

        NDWI指数的数值范围在-1到1之间,数值越接近1表示水体的可能性越高,数值越接近-1表示植被的可能性越高,数值接近0表示陆地或无水体的可能性较高。

        NDWI指数在水资源监测、植被提取等领城具有广泛应用。如,可以利用NDWI指数来提取水体边界、监测水体污染、测算湖泊蓄水量、提取洪水等。同时,NDWI指数还可以用于植被健康状况的评估和监测。

        NDWI主要利用了在近红外波段水体强吸收几乎没有反射而植被反射率很强的特点,通过抑制植被和突出水体用来提取影像中的水体信息,效果较好。但是由于NDWI只考虑了植被因素,忽略了建筑物和土壤这2个重要的地物,通过NDWI提取水体信息时由于绿光波段的反射率远远高于近红外波段,所以提取结果往往混淆有土壤和建筑物信息。用NDWI提取城市水体时会有较多建筑物阴影的水体,效果较差。


编写脚本来计算和显示不同类型的指数,比如归一化水体指数NDWI)和归一化建筑指数(NDBI),通常涉及到遥感图像处理和地理信息系统(GIS)技术。以下是一个简化的步骤: 1. **导入所需库**:首先,你需要导入像GDAL(用于读取和操作地理空间数据)、NumPy(数值计算库)和matplotlib(可视化工具)这样的库。 ```python import gdal import numpy as np import matplotlib.pyplot as plt ``` 2. **读取遥感图像**:使用GDAL库加载需要分析的卫星或航空影像数据。 ```python image = gdal.Open('path_to_image.tif') band1 = image.GetRasterBand(1) band2 = image.GetRasterBand(2) ``` 3. **计算NDWI**:NDWI通常是基于近红外波段(例如B8)和绿波段(例如B4)的差值除以它们的和。公式大致如下: ```python ndwi = (band1_data - band2_data) / (band1_data + band2_data) ``` 4. **计算NDBI**:NDBI则可能涉及短波红外(SWIR,例如B5)和近红外的比值。类似地: ```python ndbi = (band5_data - band1_data) / (band5_data + band1_data) ``` 5. **归一化**:将计算出的数据进行归一化,以便于后续的地图显示。 6. **创建RGB图或伪彩色图**:结合可见光波段(例如红、绿、蓝)和处理后的指数数据,创建一个可以显示在地图上的图像。 ```python rgb_array = ... # 使用可见光波段构建RGB数组 colorized_ndwi = ... # 将NDWI映射到颜色范围 colorized_ndbi = ... fig, ax = plt.subplots() ax.imshow(rgb_array) ax.imshow(colorized_ndwi, cmap='RdYlGn', alpha=0.5) ax.imshow(colorized_ndbi, cmap='coolwarm', alpha=0.5) ``` 7. **保存和显示**:最后,保存图像并显示结果。 ```python plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值