题目链接:https://codeforces.com/contest/1722/problem/D
题目描述
一群人排队,他们头的朝向分别左右两个方向,即'L'、'R'。接着给出一个值k,k表示最多可以改变k个人的头朝向。请你分别求出,从1到k,他们可以看到的人的最大数量分别是多少?第一个样例,输入LLR,当k=1时,改变LLR成RLR,此时可以看到最大人数,数量是2+1+0=3;k=2,RLR变成RLL,最大人数数量为2+1+2=5;k=3,其实此时剩下一个人的头朝向可变可不变,因为变了也不会增加最终数量RLL变成RRL,数量是2+1+2=5。因此答案输出3 5 5。
思路
因为改变一个人的头朝向不会影响到其他人,所以我们可以记录下每个人改变头朝向后的变化值。比如“LRRLL”,记录:“+4,−2,0, −2, −4”。然后采用贪心思想,将记录数从大到小排序,目的是,每次改变为了使得最终数量最大,就让总和数量加上改变后能得到的最大值,即如果记录的改变值大于0,说明能增加最终数量,就将值加入到最终数量中。
C++代码:
#include<algorithm>
#include<iostream>
#include<vector>
#include<cmath>
#include<cstring>
#include<string>
#define int long long
using namespace std;
signed main() {
int t, k;
string s;
cin >> t;
auto solve = [&]() {
vector<int> v;
int sum = 0;
cin >> k >> s;
for (int i = 0; i < k; i++) {
if (s[i] == 'L') {
v.emplace_back((k - i - 1) - i);
sum += i;
}
else{
v.emplace_back(i - (k - i - 1));
sum += k - i - 1;
}
}
sort(v.begin(), v.end(), greater<int>());
for (auto i : v) {
if (i >= 0) sum += i;
cout << sum << " ";
}
cout << "\n";
};
while (t--) solve();
return 0;
}