强化学习算法之策略迭代动态规划算法——以悬崖漫步环境(CliffWalking)为例

import copy
class CliffWalkingEnv:
    def __init__(self,ncol=12,nrow=4):
        self.ncol=ncol#定义网格世界的列
        self.nrow=nrow#定义网格世界的行
        self.P=self.createP()#转移矩阵P[state][action]=[(p,next_state,reward,done)]包含下一个状态和奖励
    def createP(self):
        P=[[[]for i in range(4)]for j in range(self.ncol*self.nrow)]#初始化
        change=[[0,-1],[0,1],[-1,0],[1,0]]#4种动作,change[0]:上;change[0]:上;change[0]:上;change[0]:上。[列变化,行变化];坐标系原点(0,0)
        for i in range(self.nrow):
            for j in range(self.ncol):
                for a in range(len(change)):
                    if i==self.nrow-1 and j>0:#如果在悬崖或者目标状态,任何动作奖励都为0
                        P[i*self.ncol+j][a]=[(1,i*self.ncol+j,0,True)]
                        continue
                    next_x=min(self.ncol-1,max(0,j+change[a][0]))
                    next_y=min(self.nrow-1,max(0,i+change[a][1]))
                    next_state=next_y*self.ncol+next_x
                    reward=-1
                    done=False
                    if next_y==self.ncol-1 and next_x>0:#如果下一个位置在悬崖或者终点,done=True
                        done=True
                        if next_x==self.ncol:#如果在悬崖,奖励为-100
                            reward=-100
                    P[i*self.ncol+j][a]=[(1,next_state,reward,done)]
        return P
class PolicyIteration:
    """ 策略迭代算法 """
    def __init__(self,env,theta,gamma):
        self.env=env
        self.theta=theta#策略评估收敛阈值
        self.gamma=gamma#折扣因子
        self.v=[0]*(self.env.ncol*self.env.nrow)#初始化价值为0
        self.pi=[[0.25,0.25,0.25,0.25]for i in range(self.env.ncol*self.env.nrow)]
    def policy_evaluation(self):
        count=1
        while 1:
            max_diff=0
            new_v=[0]*self.env.ncol*self.env.nrow
            for s in range(self.env.ncol*self.env.nrow):
                Qsa_list=[]#开始计算状态s下面的所有Q(s,a)价值
                for a in range(4):
                    Qsa=0
                    for res in self.env.P[s][a]:
                        p,next_state,reward,done=res
                        Qsa+=p*(reward+self.gamma*self.v[next_state]*(1-done))#本环境特殊,奖励和下一个状态有关,所以需要和状态转移概率相乘
                    Qsa_list.append(self.pi[s][a]*Qsa)
                new_v[s]=sum(Qsa_list)#状态价值函数与动作价值函数之间的关系
                max_diff=max(max_diff,abs(new_v[s]-self.v[s]))
            self.v=new_v
            if max_diff<self.theta:break#满足收敛条件,退出评估迭代
            count+=1
        print("策略评估进行%d轮后完成"%count)
    def policy_improvement(self):#策略提升
        for s in range(self.env.ncol*self.env.nrow):
            Qsa_list=[]
            for a in range(4):
                Qsa=0 
                for res in self.env.P[s][a]:
                    p,next_state,reward,done=res
                    Qsa+=p*(reward+self.gamma*self.v[next_state]*(1-done))
                Qsa_list.append(Qsa)
            max_Qsa=max(Qsa_list)
            count_max_Qsa=Qsa_list.count(max_Qsa)#计算有几个动作得到最大的Q值
            self.pi[s]=[1/count_max_Qsa if p==max_Qsa else 0 for p in Qsa_list]#让这些动作均分概率
        print("策略提升完成")
        return self.pi

    def policy_iteration(self):#策略迭代
        while 1:
            self.policy_evaluation()
            old_pi=self.pi.copy()#将列表进行深拷贝,方便接下来进行比较
            new_pi=self.policy_improvement()
            if new_pi==old_pi:break
#打印策略函数,打印当前策略在每一个状态下的价值以及智能体会采取的动作。对于打印出来的动作,用o↓o→表示等概率采取向上和向右两种动作,ooo→表示在当前状态下仅仅采取向右动作。
def print_agent(agent,action_meaning,disater=[],end=[]):
    print("状态价值:")
    for i in range(agent.env.nrow):
        for j in range(agent.env.ncol):
            print('%6.6s' % ('%.3f' % agent.v[i*agent.env.ncol+j]),end=' ')
        print()

    print("策略:")
    for i in range(agent.env.nrow):
        for j in range(agent.env.ncol):
            #一些特殊的状态,例如悬崖漫步中的悬崖
            if (i*agent.env.ncol+j) in disater:
                print('****',end=' ')
            elif (i*agent.env.ncol+j) in end:#目标状态
                print('EEEE',end=' ')
            else:
                a=agent.pi[i*agent.env.ncol+j]
                pi_str=''
                for k in range(len(action_meaning)):
                    pi_str+=action_meaning[k] if a[k]>0 else 'o'
                print(pi_str,end=' ')
        print()#换行

env=CliffWalkingEnv()
action_meaning=['↑','↓','←','→']
theta=0.001
gamma=0.9
agent=PolicyIteration(env,theta,gamma)
agent.policy_iteration()
print_agent(agent,action_meaning,list(range(37,47)),[47])
""" 经过5次策略评估和策略提升后,策略收敛了,用贝尔曼最优方程检验每一个状态价值,发现最终输出策略确为最优策略。"""

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值