gcd&&拓展gcd

一、同余
结论
(a + b ) m o d      n = ( ( a m o d      n ) + ( b m o d      n ) ) m o d      n
( a − b ) m o d      n = ( ( a m o d      n ) − ( b m o d      n ) ) m o d
( a × b ) m o d      n = ( ( a m o d      n ) × ( b m o d      n ) ) m o d
二、GCD&LCM
 GCD
GCD即最大公约数,小学的时候我们就学习了求两数的最大公约数的方法。但是要注意如果有一个数为0的话那么最小公约数就是另一个不为0的数,我们在这里只需要知道GCD是什么东西就行了

更相减损法
两个正整数a和b(a>b),它们的最大公约数等于a-b的差值c和较小数b的最大公约数。

int gcd_3(int a,int b) {//更相减损法 递归写法 
    if(a == 0)
        return b;
    if(b == 0)
        return a; 
    if(a == b)
        return a;
    if(a > b)
        return gcd_3(a-b,b);
    if(a < b)
        return gcd_3(b-a,a);
}
int gcd_4(int a,int b) {//更相减损法 循环写法 
    if(a == 0)
      return b;
    if(b == 0)
      return a;
    while(a != b) {
        if(a > b)
            a -= b;
        else
        {
            int t = a;
            a = b - a;
            b = t;
        }
    }
    return a;
}


辗转相除法
两个正整数a和b(a>b),它们的最大公约数等于a除以b的余数c和b之间的最大公约数。

其实就是把更相减损变得更高级一点(加减运算变乘除运算,提升了一个级别)

但是大整数取模会让一些题极为头疼,所以我们还是要慎重考虑什么时候用更相减损什么时候用辗转相除。

int gcd_1(int a,int b){//辗转相除法 循环写法 
    while(b > 0) {
        int t = a%b;
        a = b;
        b = t;
    }
    return a;
}
int gcd_2(int a,int b) {//辗转相除法 递归写法 
    return b?gcd_2(b,a%b) : a;
}


LCM
LCM即最小公倍数,小学的时候也学过,当我们求出GCD的时候,LCM也就出来了,
L C M   =   a × b /G C D ( a , b )

拓展欧几里得
前置知识
辗转相除法、贝祖定理

辗转相除法就是不断的让较大的数模上较小的数,最后使得其中一个数位0,最后得到答案
贝祖定理:$ax+by=c,x∈Z*,y∈Z* \ 成 立 的 充 要 条 件 是 成立的充要条件是成立的充要条件是gcd(a,b)|c$
贝祖定理证明:

设s = g c d ( a , b ) s=gcd(a,b)s=gcd(a,b),显然s ∣ a ,并且s ∣ b 

又因为x , y ∈ Z 

所以s ∣ (a* x),s ∣ ( b* y ) 

显然要使得之前的式子成立,则必须满足c cc是a aa和b bb的公约数的倍数

又因为x 和y 是正整数

所以c 必然是a , b  最大公约数的倍数。

因此,证得该定理成立

当然我这里写的可能只有两元,但是这个定理可以拓展到n元,请大家思考拓展到n元的情况

问题引出
求得任意一组解:a* x + b * y = 1 

思路
很显然,我们能知道如果g c d ( a , b ) ! = 1 的话是无解的,所以我们只看g c d ( a , b ) = 1 的情况,通过拓展欧几里得的算法我们可以解决这一类问题

拓展欧几里得算法代码

int ex_gcd(int a,int b,int &x,int &y)//返回的值还是GCD(a,b)
{
    if(b==0)//等于0的情况直接返回了
    {
        x=1;
        y=0;
        return a;
    }
    int ans=ex_gcd(b,a%b,x,y);//获得x',y';
    int temp=x;//存储x'
    x=y;//x=y'
    y=temp-(a/b)*x;//y=x'-(a/b)*y'
    return ans;
}

这里注意一下:函数在读取 x 和 y 的时候使用的是 &  ,

&是引用符号,与普通的函数调用不同,这个引用可以直接改变x , y 的值,而且不会消失,普通的函数调用都是使用临时变量。
2.3.5 原理证明
若a x + b y = c 有解,且设t = g c d ( a , b ) ,则c % t = 0 

①设a x + b y = t 

当b等于0时,t = a

因为g c d ( a , 0 ) = a ,则会有a × x = a ,即x = 1 

② 当b不等于0时 

a x + b y = g c d ( a , b )  —Ⅰ

我们可以推出下一层的状态:( a , b 用到了辗转相除法)

b x ′ + ( a % b ) y ′ = g c d ( b , a % b ) — Ⅱ

又因为 g c d ( b , a % b ) = g c d ( a , b ) — Ⅲ

所以由Ⅰ、Ⅱ、Ⅲ可得:a x + b y = b x ′ + ( a % b ) y ′  —Ⅴ

又因为a % b = a − ⌊ a b ⌋ × b  — Ⅵ

所以由Ⅴ、Ⅵ可得:a x + b y = a ∗ y ′ + b × ( x ′ − ⌊ a /b ⌋ × y ′ ) 

所以可以得到:x = y ′ , y = x ′ − ⌊ a /b ⌋ × y ′

拓展gcd模板(求ax+by=c的任意一组解):

由贝祖定理我们可以得到a x + b y = k ∗ g c d ( a , b ) 一定存在
 

#include<bits/stdc++.h>
using namespace std;
#define ll long long

ll exgcd(ll a,ll b,ll &x,ll &y){
    if(!b){
        x = 1,y = 0;
        return a;
    }
    ll d = exgcd(b,a%b,y,x);
    y -= a/b * x;
    return d;
}

int main()
{
    int n;
    scanf("%d",&n);
    while(n--){
        ll a,b,x,y;
        scanf("%lld %lld",&a,&b);
        exgcd(a,b,x,y);
        printf("%lld %lld\n",x,y);
    }
    
    return 0;
}

原文链接:
https://blog.csdn.net/m0_46201544/article/details/122896816

 

https://blog.csdn.net/m0_46201544/article/details/122280910

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值