回溯算法part01(24.01.19)
- 学习时长:2h
- 学习内容:自己尝试+pdf说明+视频+力扣题解+自己默写
- 学习感悟:差了好几天的打卡没打,我现在好懵...递归那里完全看不懂==
回溯法理论基础
文章链接:代码随想录 (programmercarl.com)
回溯法也可以叫做回溯搜索法,它是一种搜索的方式。回溯是递归的副产品,只要有递归就会有回溯。所以以下讲解中,回溯函数也就是递归函数,指的都是一个函数。
回溯法,一般可以解决如下几种问题:
- 组合问题:N个数里面按一定规则找出k个数的集合
- 切割问题:一个字符串按一定规则有几种切割方式
- 子集问题:一个N个数的集合里有多少符合条件的子集
- 排列问题:N个数按一定规则全排列,有几种排列方式
- 棋盘问题:N皇后,解数独等等
回溯法解决的问题都可以抽象为树形结构
77. 组合
题目链接:力扣题目链接
笔记:
回溯的核心思想其实还是暴力解题,唯一能优化的措施是进行剪枝,以减少工作量。
提交代码:
#未剪枝版本
class Solution:
def combine(self, n: int, k: int) -> List[List[int]]:
result = [] # 存放结果集
self.backtracking(n, k, 1, [], result)
return result
def backtracking(self, n, k, startIndex, path, result):
if len(path) == k:
result.append(path[:])
return
for i in range(startIndex, n + 1): # 需要优化的地方
path.append(i) # 处理节点
self.backtracking(n, k, i + 1, path, result)
path.pop() # 回溯,撤销处理的节点
#剪枝版本
class Solution:
def combine(self, n: int, k: int) -> List[List[int]]:
result = [] # 存放结果集
self.backtracking(n, k, 1, [], result)
return result
def backtracking(self, n, k, startIndex, path, result):
if len(path) == k:
result.append(path[:])
return
for i in range(startIndex, n - (k - len(path)) + 2): # 优化的地方
path.append(i) # 处理节点
self.backtracking(n, k, i + 1, path, result)
path.pop() # 回溯,撤销处理的节点