图片格式是 (256, 256, 3)的理解

本文介绍了如何使用NumPy库处理一个256x256图像数组,以3x3像素区域为例,展示了数组的三维结构,包括每个像素点的三个通道。作者通过简化数据演示了数组操作在图像处理中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np

# 假设这是一个随机生成的 256x256 图像的一部分
example_part_of_image_array = np.array([
    [[255, 0, 0], [0, 255, 0], [0, 0, 255]],
    [[0, 0, 0], [255, 255, 255], [128, 128, 128]],
    [[255, 255, 0], [0, 255, 255], [255, 0, 255]]
], dtype=np.uint8)

print(example_part_of_image_array)

形状为 (3, 3, 3) 的 NumPy 数组,代表了一个 3x3 像素的图像区域。这只是为了演示数组的结构,实际的数组会有 256x256 个像素点,每个像素点有三个通道。

也就是说不看最里面的数据,就是一个二维数组

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值