机器学习
文章平均质量分 64
121212121212121212
芒着可爱
这个作者很懒,什么都没留下…
展开
-
tensorflow2.x 高阶操作
高阶操作wherescatter_ndmeshgridwhere一个参数:condition=mask, x=None, y=None, name=None返回 mask中值为True的元素的坐标3个参数:condition=mask, x=A, y=B, name=Nonecondition:为一个True和False的tensorx,y必须和condition形状一样如果为True,将A中对应的值填入;如果为False,将B中对应的值填入返回的就是这个由A、B中元素组成的新的t原创 2021-09-30 12:25:25 · 197 阅读 · 0 评论 -
tensorflow2.x 张量限幅
张量限幅tf.clip_by_value()tf.clip_by_value()原创 2021-09-30 00:00:00 · 160 阅读 · 0 评论 -
tensorflow2.x 填充和复制
填充和复制tf.pad()tf.tiletf.pad()tf.pad() 填充参数: tensor, paddings, mode=“CONSTANT”, constant_values=0, name=Nonepaddings:填充的位置 [[,],…,[,]],具体看代码constant_values:填充的值# tf.pad()a = tf.reshape(tf.range(9),[3,3])print(a)print(tf.pad(a, [[0, 0], [0, 0]]))#原创 2021-09-30 00:00:00 · 155 阅读 · 0 评论 -
tensorflow2.x 张量排序
张量排序Sort/argsorttf.math.top_k()**top-k accuracy**:Sort/argsortSort : 对某一维度上的完全排序,返回一个排序后的 tensorargsort :对某一维度上的完全排序,返回一个排序后tensor所对应的位置(索引)参数:direction:降序DESCENDING、升序ASCENDINGaxis : 维度# tf.sort() / tf.argsort()a = tf.random.shuffle(tf.range(5)原创 2021-09-30 00:00:00 · 115 阅读 · 0 评论 -
tensorflow2.x 张量的数据统计
@TOP数据统计▪ tf.norm▪ tf.reduce_min/max▪ tf.argmax/argmin▪ tf.equal▪ tf.unique原创 2021-09-29 00:00:00 · 165 阅读 · 0 评论 -
tensorflow 张量的合并何分割
目录合并和分割的接口:tf.concat合并和分割的接口:tf.concat 拼接tf.split 分割tf.stack 堆叠tf.unstack 分割tf.concat原创 2021-09-26 10:36:54 · 244 阅读 · 0 评论 -
tensorflow 2.x 数学运算
数学运算▪ (+) 加 (-) 减(*)乘( /)除▪ (**)次方, (pow)次方, (square )平方▪( sqrt)平方根▪ (//)整除, (%)取余▪ exp,( log )取对数▪ @, matmul 矩阵相乘▪ linear layer运算类型元素运算 + - * /矩阵运算 @, matmul维度运算 reduce_mean 、max、min、sum+ -*/%//import tensorflow as tfb = tf.fill([2,2]原创 2021-09-22 16:55:35 · 162 阅读 · 0 评论 -
tensorflow 2.x Broadcasting
Broadcasting本质上是一个张量的维度的扩张手段,它是指对某一个维度上面重复N多次,但是却没有真正的复制数据,但是却呈现出数据被扩张了。机制:expandwithout copying dataVS tf.tiletf.broadcast_to举例:Feature maps: [4, 32, 32, 3]▪ Bias: [3] → [1, 1, 1, 32] → [4, 32, 32, 3]如何理解??When it has no axis 如果没有这一个维原创 2021-09-22 10:03:30 · 106 阅读 · 0 评论 -
tensorflow2.x 张量实战初
# -*- coding = utf-8 -*-# @Time :2021/9/21 20:38# @Author : 黄小敏# @File : t3# @Software : PyCharmimport tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras import datasetsimport osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #关闭无关信息#加载原创 2021-09-21 21:18:41 · 80 阅读 · 0 评论 -
tensorflow2.x维度变化
代码及示例#维度变换import tensorflow as tfimport numpy as np# reshapea = tf.random.normal([4,28,28,3])print(a.shape,a.ndim)'''(4, 28, 28, 3) 4'''print(tf.reshape(a, [4, 28 * 28, 3]).shape)'''(4, 784, 3)'''print(tf.reshape(a,[4,28*28*3]).shape)'''(4, 23原创 2021-09-21 18:14:55 · 87 阅读 · 0 评论 -
初识tensorflow(2.0)+ 创建tensor + 切片和索引
为什么要使用tensorflow??GPU加速自动求导神经网络API原创 2021-09-21 16:00:45 · 211 阅读 · 0 评论 -
tensorflow基础
创建图和启动图## 创建和启动图import tensorflow as tf# 创建一个常量opm1 = tf.constant([[3,3]])# 创建一个常量opm2 = tf.constant([[2],[3]])# 创建一个矩阵乘法,传入m1和m2product = tf.matmul(m1,m2)print(product)# 定义一个绘画,启动默认的图sess = tf.Session()# 调用sess的run方法执行矩阵乘法op# run触发了图中的opre原创 2021-09-19 17:32:19 · 70 阅读 · 0 评论 -
机器学习之集成学习进阶
集成学习进阶xgboostotto案例介绍lightGBMstacking算法目录xgboostotto案例介绍lightGBMstacking算法xgboostotto案例介绍lightGBMstacking算法原创 2021-09-12 11:20:45 · 232 阅读 · 0 评论 -
机器学习之HMM模型
HMM模型马尔科夫链HMM简介HMM模型基础前向后向算法评估观察序列概率维特⽐算法解码隐藏状态序列鲍姆-⻙尔奇算法简介HMM模型API介绍目录HMM模型马尔科夫链HMM简介HMM模型基础前向后向算法评估观察序列概率维特⽐算法解码隐藏状态序列鲍姆-⻙尔奇算法简介HMM模型API介绍马尔科夫链⻢尔科夫链即为状态空间中从⼀个状态到另⼀个状态转换的随机过程。该过程要求具备“⽆记忆”的性质: 下⼀状态的概率分布只能由当前状态决定,在时间序列中它前⾯的事件均与之⽆关。这种特定类型的“⽆记忆 性原创 2021-09-05 16:08:33 · 323 阅读 · 0 评论 -
机器学习之EM
EMEM算法也称期望最⼤化(Expectation-Maximum,简称EM)算法。 它是⼀个基础算法,是很多机器学习领域算法的基础它的计算⽅法中每⼀次迭代都分两步, 其中⼀个为期望步(E步), 另⼀个为极⼤步(M步)其基本思想是:⾸先根据⼰经给出的观测数据,估计出模型参数的值;然后再依据上⼀步估计出的参数值估计缺失数据的值,再根据估计出的缺失数据加上之前⼰经观测到的数据重新再 对参数值进⾏估计;然后反复迭代,直⾄最后收敛,迭代结束。极大似然估计...原创 2021-09-05 16:04:44 · 590 阅读 · 0 评论 -
机器学习之svm
SVMSVM算法简介SVM算法的API介绍SVM算法原理SVM的损失函数SVM的核方法SVM回归SVM算法案例实践目录SVMSVM算法简介SVM算法的API介绍SVM算法原理SVM的损失函数SVM的核方法SVM回归SVM算法案例实践SVM算法简介SvM: SVM全称是supported vector machine (支持向量机),即寻找到一个超平面使样本分成两类,并且间隔最大。超平面最大间隔:寻找一个平面,使得这个平面最大地原理最近的训练实例。如右图:硬间隔分类:指严格地原创 2021-09-05 16:08:20 · 280 阅读 · 0 评论 -
机器学习之回归与聚类算法
回归与聚类算法线性回归欠拟合与过拟合分类算法-----逻辑回归与二分类模型保存和加载无监督学习----K-means算法目录回归与聚类算法线性回归线性回归的损失和优化原理优化损失线性回归API欠拟合与过拟合正则化岭回归分类算法-----逻辑回归与二分类分类的评估方法模型保存和加载无监督学习----K-means算法线性回归回归问题:目标值—连续型的数据什么是线性回归?线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间原创 2021-08-30 12:45:01 · 252 阅读 · 0 评论 -
机器学习之分类算法
分类算法目标值:类别sklearn转换器和预估器KNN算法模型选择与调优朴素贝叶斯算法决策树随机森林文章目录分类算法sklearn转换器和预估器KNN算法(K-近邻算法)模型选择与调优案例:预测Facebook签到位置朴素贝叶斯算法决策树随机森林sklearn转换器和预估器转换器 transfrom实例化 (实例化的是一个转换器类(Transfermer))调用fit_transfrom(对于文档建立分类词频矩阵,不能同时调用)估计器 estimator用于分类原创 2021-08-28 20:54:21 · 640 阅读 · 0 评论 -
机器学习之特征工程
什么是特征工程?特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。意义:会直接影响机器学习的效果特征工程包含的内容:特征抽取特征预处理特征降维特征抽取机器学习算法 – 统计方法 – 数学公式文本类型 —> 数值类型 ----> 数值字典的特征提取sklearn.feature_extraction.DictVectorizer(sparse=True…)vector 向量、矢量 矩阵: matrix 二维数组 向量原创 2021-08-23 13:45:24 · 201 阅读 · 0 评论 -
机器学习---数据集
数据集目标知道数据集分为训练集和测试集会使用sklearn的数据集可用数据集安装pip3 install Scikit-learn==0.19.1查看是否安装成功的命令:import sklearn注意安装scikit-learn需要numpy、scipy等库...原创 2021-08-21 19:33:18 · 169 阅读 · 0 评论 -
机器学习概述
机器学习、深度学习能做什么?传统预测图像识别自然语言处理什么是机器学习?机器学习是从数据中自动分析获得模型(规律),并利用模型对位置数据进行预测。数据集的构成结构:特征值+目标值注:1.对于每一行数据我们称之为样本2.有些数据集可以没有目标值机器学习的算法分类目标值:类别 —— 分类问题连续型的数据 —— 回归问题无 —— 无监督学习总结:机器学习的算法分为两大类,分别是监督学习和无监督学习。监督学习 —> (分类、回归) —>输入的数据有特征标原创 2021-08-15 17:16:23 · 116 阅读 · 0 评论