机器学习之集成学习进阶

集成学习进阶

  • xgboost
  • lightGBM

xgboost

xgboost原理

XGBoost(Extreme Gradient Boosting)全名叫极端梯度提升树,XGBoost是集成学习⽅法的王牌,在Kaggle数据挖掘 ⽐赛中,⼤部分获胜者⽤了XGBoost。

目标函数
在这里插入图片描述

CART树
在这里插入图片描述
树的复杂度
在这里插入图片描述

计算分裂节点
在这里插入图片描述
停⽌分裂条件判断
在这里插入图片描述

xgboost算法

xgboost的安装:

pip install xgboost

xgboost参数介绍
xgboost中封装了很多参数,主要由三种类型构成:通⽤参数(general parameters),Booster 参数(booster parameters)和学习⽬标参数(task parameters)

  • 通⽤参数:主要是宏观函数控制;
  • Booster参数:取决于选择的Booster类型,⽤于控制每⼀步的booster(tree, regressiong);
  • 学习⽬标参数:控制训练⽬标的表现。

通⽤参数(general parameters):

booster [缺省值=gbtree] 决定使⽤哪个booster,可以是gbtree,gblinear或者dart。 gbtree和dart使⽤基于树的模型(dart 主要多了 Dropout),⽽gblinear 使⽤线性函数.

silent [缺省值=0] 设置为0打印运⾏信息;设置为1静默模式,不打印

nthread [缺省值=设置为最⼤可能的线程数] 并⾏运⾏xgboost的线程数,输⼊的参数应该<=系统的CPU核⼼数,若是没有设置算法会检测将其设置为CPU 的全部核⼼数

Booster 参数(booster parameters):
在这里插入图片描述
在这里插入图片描述学习⽬标参数(task parameters):
在这里插入图片描述

案例
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction import DictVectorizer
from xgboost import XGBClassifier
#1.获取数据
titan = pd.read_csv("titanic.txt")

#2.数据的基本处理
#特征值+目标值
x = titan[['pclass','age','sex']]
y = titan['survived']
#缺失数据处理
x['age'].fillna(value=titan['age'].mean(),inplace=True)
#数据集划分
x_train,x_test,y_train,y_test = train_test_split(x,y,random_state=22,test_size=0.2)

#3.特征工程
x_train = x_train.to_dict(orient='records')
x_test = x_test.to_dict(orient='records')
transfer = DictVectorizer()
x_train = transfer.fit_transform(x_train)
x_test = transfer.fit_transform(x_test)

#4.xgboost模型训练
#初步模型训练
xg = XGBClassifier()
xg.fit(x_train,y_train)
print(xg.score(x_test, y_test))
#对max_depth进行调优
depth_range = range(10)
score = []
for i in depth_range:
    xg = XGBClassifier(eta=1,gamma=0,max_depth=i)
    xg.fit(x_train,y_train)
    s = xg.score(x_test,y_test)
    print(s)
    score.append(s)
#调优结果可视化
plt.plot(depth_range,score)
plt.show()

在这里插入图片描述

lightGBM

在这里插入图片描述

lightGBM原理

lightGBM 主要基于以下⽅⾯优化,提升整体特特性:

  1. 基于Histogram(直⽅图)的决策树算法
  2. Lightgbm 的Histogram(直⽅图)做差加速
  3. 带深度限制的Leaf-wise的叶⼦⽣⻓策略
  4. 直接⽀持类别特征
  5. 直接⽀持⾼效并⾏

基于Histogram(直⽅图)的决策树算法
在这里插入图片描述
优点:

  • 内存消耗降低
  • 计算的时间复杂度降低

缺点:

  • 分割不精确,可能对计算结果有影响

Lightgbm 的Histogram(直⽅图)做差加速
在这里插入图片描述
带深度限制的Leaf-wise的叶⼦⽣⻓策略
在这里插入图片描述

直接⽀持⾼效并⾏
在这里插入图片描述在这里插入图片描述

lightGBM算法api介绍

安装

pip install lightgbm

参数介绍
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

案例
import lightgbm as lgb
from sklearn.datasets import load_iris
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split

# 读取数据
iris = load_iris()
data = iris.data
target = iris.target

# 数据基本处理
x_train, x_test, y_train, y_test = train_test_split(data, target, test_size=0.2)

# 模型训练
# 模型基本训练
gbm = lgb.LGBMRegressor(objective='regression', learning_rate=0.05, n_estimators=200)
gbm.fit(x_train, y_train, eval_set=[(x_test, y_test)], eval_metric='11', early_stopping_rounds=3)
print(gbm.score(x_test, y_test))
# 通过网格搜索进行训练
estimators = lgb.LGBMRegressor(num_leaves=31)
param_grid = {
    'learning_rate': [0.01, 0.1, 1],
    'n_estimators': [20, 40, 60, 80]
}
gbm = GridSearchCV(estimators, param_grid, cv=5)
gbm.fit(x_train, y_train)
gbm.best_params_
gbm = lgb.LGBMRegressor(objective='regression', learning_rate=0.05, n_estimators=200)
gbm.fit(x_train, y_train, eval_set=[(x_test, y_test)], eval_metric='11', early_stopping_rounds=3)
print(gbm.score(x_test, y_test))

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值